Large-scale structural and textual similarity-based mining of knowledge graph to predict drug–drug interactions

计算机科学 可扩展性 新颖性 图形 相似性(几何) 数据挖掘 药物重新定位 语义相似性 药品 机器学习 人工智能 理论计算机科学 数据库 医学 精神科 图像(数学) 哲学 神学
作者
Ibrahim Abdelaziz,Achille Fokoue,Oktie Hassanzadeh,Ping Zhang,Mohammad Sadoghi
出处
期刊:Journal of Web Semantics [Elsevier BV]
卷期号:44: 104-117 被引量:88
标识
DOI:10.1016/j.websem.2017.06.002
摘要

Drug–Drug Interactions (DDIs) are a major cause of preventable Adverse Drug Reactions (ADRs), causing a significant burden on the patients’ health and the healthcare system. It is widely known that clinical studies cannot sufficiently and accurately identify DDIs for new drugs before they are made available on the market. In addition, existing public and proprietary sources of DDI information are known to be incomplete and/or inaccurate and so not reliable. As a result, there is an emerging body of research on in-silico prediction of drug–druginteractions. In this paper, we present Tiresias, a large-scale similarity-based framework that predicts DDIs through link prediction. Tiresias takes in various sources of drug-related data and knowledge as inputs, and provides DDI predictions as outputs. The process starts with semantic integration of the input data that results in a knowledge graph describing drug attributes and relationships with various related entities such as enzymes, chemical structures, and pathways. The knowledge graph is then used to compute several similarity measures between all the drugs in a scalable and distributed framework. In particular, Tiresias utilizes two classes of features in a knowledge graph: local and global features. Local features are derived from the information directly associated to each drug (i.e., one hop away) while global features are learnt by minimizing a global loss function that considers the complete structure of the knowledge graph. The resulting similarity metrics are used to build features for a large-scale logistic regression model to predict potential DDIs. We highlight the novelty of our proposed Tiresias and perform thorough evaluation of the quality of the predictions. The results show the effectiveness of Tiresias in both predicting new interactions among existing drugs as well as newly developed drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
anfly完成签到,获得积分10
1秒前
1秒前
yecheng完成签到,获得积分10
1秒前
小美完成签到 ,获得积分10
2秒前
Vyasa完成签到,获得积分10
3秒前
成就飞柏发布了新的文献求助10
4秒前
ice7完成签到,获得积分10
5秒前
CHAosLoopy应助和谐的敏采纳,获得10
6秒前
科研通AI2S应助小xy采纳,获得10
6秒前
mylaodao完成签到,获得积分0
7秒前
8秒前
8秒前
zy完成签到,获得积分10
10秒前
前前前世完成签到,获得积分10
11秒前
Sun发布了新的文献求助10
12秒前
12秒前
13秒前
善学以致用应助jiang采纳,获得20
13秒前
情怀应助jiangjiang采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
甜美宛儿完成签到,获得积分10
15秒前
科目三应助xqxqxqxqxqx采纳,获得10
15秒前
16秒前
17秒前
周常通完成签到,获得积分10
18秒前
怕黑的灯泡完成签到,获得积分10
21秒前
smile发布了新的文献求助10
21秒前
凉凉应助木头桌子采纳,获得10
21秒前
欧气青年完成签到,获得积分10
22秒前
Jm完成签到,获得积分10
23秒前
李爱国应助成就的绮南采纳,获得10
24秒前
24秒前
smile完成签到,获得积分10
28秒前
29秒前
傻傻的听安完成签到,获得积分10
30秒前
31秒前
川哥完成签到,获得积分10
31秒前
llchen完成签到,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010774
求助须知:如何正确求助?哪些是违规求助? 3550436
关于积分的说明 11305765
捐赠科研通 3284800
什么是DOI,文献DOI怎么找? 1810853
邀请新用户注册赠送积分活动 886574
科研通“疑难数据库(出版商)”最低求助积分说明 811499