Large-scale structural and textual similarity-based mining of knowledge graph to predict drug–drug interactions

计算机科学 可扩展性 新颖性 图形 相似性(几何) 数据挖掘 药物重新定位 语义相似性 药品 机器学习 人工智能 理论计算机科学 数据库 医学 精神科 图像(数学) 哲学 神学
作者
Ibrahim Abdelaziz,Achille Fokoue,Oktie Hassanzadeh,Ping Zhang,Mohammad Sadoghi
出处
期刊:Journal of Web Semantics [Elsevier]
卷期号:44: 104-117 被引量:88
标识
DOI:10.1016/j.websem.2017.06.002
摘要

Drug–Drug Interactions (DDIs) are a major cause of preventable Adverse Drug Reactions (ADRs), causing a significant burden on the patients’ health and the healthcare system. It is widely known that clinical studies cannot sufficiently and accurately identify DDIs for new drugs before they are made available on the market. In addition, existing public and proprietary sources of DDI information are known to be incomplete and/or inaccurate and so not reliable. As a result, there is an emerging body of research on in-silico prediction of drug–druginteractions. In this paper, we present Tiresias, a large-scale similarity-based framework that predicts DDIs through link prediction. Tiresias takes in various sources of drug-related data and knowledge as inputs, and provides DDI predictions as outputs. The process starts with semantic integration of the input data that results in a knowledge graph describing drug attributes and relationships with various related entities such as enzymes, chemical structures, and pathways. The knowledge graph is then used to compute several similarity measures between all the drugs in a scalable and distributed framework. In particular, Tiresias utilizes two classes of features in a knowledge graph: local and global features. Local features are derived from the information directly associated to each drug (i.e., one hop away) while global features are learnt by minimizing a global loss function that considers the complete structure of the knowledge graph. The resulting similarity metrics are used to build features for a large-scale logistic regression model to predict potential DDIs. We highlight the novelty of our proposed Tiresias and perform thorough evaluation of the quality of the predictions. The results show the effectiveness of Tiresias in both predicting new interactions among existing drugs as well as newly developed drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
爆米花应助木木采纳,获得10
2秒前
LF完成签到,获得积分10
2秒前
style_fire完成签到,获得积分10
2秒前
2秒前
Alive发布了新的文献求助10
3秒前
3秒前
甜甜的莞完成签到 ,获得积分10
4秒前
拉拉完成签到,获得积分20
4秒前
hhhhh完成签到,获得积分10
4秒前
YY-Bubble完成签到,获得积分10
5秒前
沉静的煎蛋完成签到,获得积分10
5秒前
自觉悟空完成签到,获得积分10
6秒前
6秒前
小吉麻麻完成签到,获得积分10
6秒前
Asma_2104完成签到,获得积分20
6秒前
菜籽发布了新的文献求助10
7秒前
sophia完成签到 ,获得积分10
7秒前
潜山耕之完成签到,获得积分10
8秒前
8秒前
8秒前
秦时明月完成签到,获得积分10
8秒前
科研通AI2S应助贝塔贝塔采纳,获得10
8秒前
8秒前
hhm完成签到,获得积分10
9秒前
Dfish完成签到,获得积分10
9秒前
星辰大海应助优雅的帅哥采纳,获得10
10秒前
蓝桉完成签到,获得积分10
10秒前
ncwgx完成签到,获得积分10
10秒前
hhy发布了新的文献求助10
11秒前
苦行僧完成签到,获得积分10
11秒前
12rcli发布了新的文献求助10
14秒前
十三发布了新的文献求助10
14秒前
奋斗的剑完成签到 ,获得积分10
15秒前
笑笑完成签到,获得积分10
15秒前
专一的凝荷完成签到,获得积分10
15秒前
Gtpangda完成签到 ,获得积分10
15秒前
lf-leo完成签到,获得积分10
16秒前
tinner完成签到,获得积分10
16秒前
盛夏完成签到,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134120
求助须知:如何正确求助?哪些是违规求助? 2784938
关于积分的说明 7769524
捐赠科研通 2440503
什么是DOI,文献DOI怎么找? 1297428
科研通“疑难数据库(出版商)”最低求助积分说明 624961
版权声明 600792