催化作用
析氧
材料科学
化学工程
分解水
煅烧
双功能
异质结
阳极
电流密度
电子转移
光催化
无机化学
化学
电化学
光化学
光电子学
电极
物理化学
生物化学
物理
量子力学
工程类
作者
Fang Shen,Zhenglin Wang,Yamei Wang,Guangfu Qian,Miaojing Pan,Lin Luo,Guoning Chen,Hailang Wei,Shibin Yin
出处
期刊:Nano Research
[Springer Science+Business Media]
日期:2021-06-08
卷期号:14 (11): 4356-4361
被引量:24
标识
DOI:10.1007/s12274-021-3548-z
摘要
Developing high performance anode catalysts for oxygen evolution reaction (OER) and hydrazine oxidation reaction (HzOR) at large current density is an efficient pathway to produce hydrogen. Herein, we synthesize a FeWO4-WO3 heterostructure catalyst growing on nickel foam (FeWO4-WO3/NF) by a combination of hydrothermal and calcination method. It shows good catalytic activity with ultralow potentials for OER (ζ10 = 1.43 V, ζ1.000 = 1.56 V) and HzOR (ζ10 = −0.034 V, ζ1.000 = 0.164 V). Moreover, there is little performance degradation after being tested for 100 h at 1,000 (OER) and 100 (HzOR) mA·cm−2, indicating good stability. The superior performance could be attributed to the wolframite structure and heterostructure: The former provides a high electrical conductivity to ensure the electronic transfer capability, and the later induces interfacial electron redistribution to enhance the intrinsic activity and stability. The work offers a brand-new way to prepare good performance catalysts for OER and HzOR, especially at large current density.
科研通智能强力驱动
Strongly Powered by AbleSci AI