线粒体DNA
遗传增强
线粒体
艾地苯醌
基因传递
生物
视神经病变
癌症研究
分子生物学
基因
遗传学
细胞生物学
生物化学
视神经
神经科学
作者
Yi Wang,Li‐Fan Hu,Peng‐Fei Cui,Lian‐Yu Qi,Lei Xing,Hu‐Lin Jiang
标识
DOI:10.1002/adma.202103307
摘要
Leber's hereditary optic neuropathy (LHON) is a rare inherited blindness caused by mutations in the mitochondrial DNA (mtDNA). The disorder is untreatable and tricky, as the existing chemotherapeutic agent Idebenone alleviates symptoms rather than overcoming the underlying cause. Although some studies have made progress on allotopic expression for LHON, in situ mitochondrial gene therapy remains challenging, which may simplify delivery procedures to be a promising therapeutic for LHON. LHON becomes more difficult to manage in the changed mitochondrial microenvironment, including increasing reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP). Herein, a pathologically responsive mitochondrial gene delivery vector named [triphenylphosphine-terminated poly(sulfur-containing thioketal undecafluorohexylamine histamine) and Ide-terminated poly(sulfur-containing thioketal undecafluorohexylamine histamine)] (TISUH) is reported to facilitate commendable in situ mitochondrial gene therapy for LHON. TISUH directly targets diseased mitochondria via triphenylphosphine and fluorination addressing the decreasing MMP. In addition, TISUH can be disassembled by high mitochondrial ROS levels to release functional genes for enhancing gene transfection efficiency and fundamentally correcting genetic abnormalities. In both traditional and gene-mutation-induced LHON mouse models, TISUH-mediated gene therapy shows satisfactory curative effect through the sustained therapeutic protein expression in vivo. This work proposes a novel pathologically responsive in situ mitochondrial delivery platform and provides a promising approach for refractory LHON as well as other mtDNA mutated diseases treatments.
科研通智能强力驱动
Strongly Powered by AbleSci AI