小旋翼机
材料科学
最小曲面
多孔性
复合材料
熔融沉积模型
3D打印
聚合物
共聚物
几何学
数学
作者
Rakesh Sankineni,Y. Ravi Kumar
标识
DOI:10.1177/09544062211039530
摘要
Additive manufacturing is an advanced technology used to fabricate complex geometries with unique properties like cellular structures which accommodate repeated unit cells located in the x, y and z direction. These structures can be used as infill patterns due to their self-supporting structure. Among the cellular structures, Triply Periodic Minimal Surface (TPMS) structures such as Gyroid, Diamond and Schwarz Primitive (SchwarzP) structures can be tailored to produce complex structures for various applications like tissue engineering scaffolds and replace the conventional polymeric foams. TPMS structures are designed and manufactured by using the Fused Deposition Modelling (FDM) technique using Poly-Lactic Acid (PLA) as material. Among TPMS structures, Gyroid is having a unique property like structurally symmetric which design was modified to enhance the mechanical properties. The modified Gyroid or deformed Gyroid undergone a quasi-static compression test and compare the results with Diamond and SchwarzP structures. Porosity and permeability coefficients are evaluated and an optical microscope is used to verify the fabricated components. As well as, Failure patterns of the structures were evaluated and energy absorption capabilities determined. The main objective of this paper is to evaluate the impact of design and porosity on the mechanical and morphological properties of TPMS structures. In conclusion, the deformed Gyroid has more energy absorption capability up to the 11.6% strain than other TPMS structures. After 11.6% of strain, SchwarzP structure dominates.
科研通智能强力驱动
Strongly Powered by AbleSci AI