Evaluation of artificial intelligence using time-lapse images of IVF embryos to predict live birth

人工智能 胚胎 男科 医学 生物 计算机科学 细胞生物学
作者
Yuki Sawada,Takeshi Sato,Masashi Nagaya,Chieko Saito,Hiroyuki Yoshihara,Chihiro Banno,Y. Matsumoto,Yukino Matsuda,K Yoshikai,Tomio Sawada,Norimichi Ukita,Mayumi Sugiura‐Ogasawara
出处
期刊:Reproductive Biomedicine Online [Elsevier]
卷期号:43 (5): 843-852 被引量:31
标识
DOI:10.1016/j.rbmo.2021.05.002
摘要

Research question Can artificial intelligence (AI) improve the prediction of live births based on embryo images? Design The AI system was created by using the Attention Branch Network associated with deep learning to predict the probability of live birth from 141,444 images recorded by time-lapse imaging of 470 transferred embryos, of which 91 resulted in live birth and 379 resulted in non-live birth that included implantation failure, biochemical pregnancy and clinical miscarriage. The possibility that the calculated confidence scores of each embryo and the focused areas visualized in each embryo image can help predict subsequent live birth was examined. Results The AI system for the first time successfully visualized embryo features in focused areas that had potential to distinguish between live and non-live births. No visual feature of embryos were visualized that were associated with live or non-live births, although there were many images in which high-focused areas existed around the zona pellucida. When a cut-off level for the confidence score was set at 0.341, the live birth rate was significantly greater for embryos with a score higher than the cut-off level than for those with a score lower than the cut-off level (P < 0.001). In addition, the live birth rate of embryos with good morphological quality and confidence scores higher than 0.341 was 41.1%. Conclusions The authors have created an AI system with a confidence score that is useful for non-invasive selection of embryos that could result in live birth. Further study is necessary to improve selection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
beibei应助香芋派采纳,获得10
刚刚
奥拉夫发布了新的文献求助20
1秒前
彭大啦啦发布了新的文献求助10
1秒前
乐乐应助公西香露采纳,获得10
2秒前
黄志敏完成签到,获得积分10
3秒前
sun发布了新的文献求助10
4秒前
4秒前
LIU完成签到,获得积分10
5秒前
Freya发布了新的文献求助10
5秒前
赘婿应助小萝卜采纳,获得10
6秒前
Bright24完成签到,获得积分10
7秒前
曾经二娘发布了新的文献求助10
10秒前
10秒前
11秒前
师无益完成签到,获得积分20
11秒前
swy完成签到,获得积分10
13秒前
光亮的柚子完成签到,获得积分20
15秒前
公西香露发布了新的文献求助10
15秒前
16秒前
16秒前
小萝卜发布了新的文献求助10
16秒前
小白不白发布了新的文献求助50
17秒前
一只豆沙包完成签到,获得积分10
17秒前
17秒前
彭大啦啦完成签到,获得积分10
18秒前
20秒前
21秒前
健壮的鸵鸟完成签到 ,获得积分20
22秒前
tz发布了新的文献求助10
23秒前
自由的刺猬完成签到,获得积分10
24秒前
25秒前
飞飞鱼发布了新的文献求助10
25秒前
史道夫发布了新的文献求助200
27秒前
赘婿应助Zhang采纳,获得10
28秒前
28秒前
29秒前
彭于彦祖应助虫不知采纳,获得30
29秒前
wwwww发布了新的文献求助10
31秒前
31秒前
咕噜咕噜发布了新的文献求助20
31秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919