Machine Learning‐Based Multiparametric Magnetic Resonance Imaging Radiomic Model for Discrimination of Pathological Subtypes of Craniopharyngioma

医学 磁共振成像 颅咽管瘤 放射科 病态的 核磁共振 病理 计算机科学 物理
作者
Z F Huang,Xiang Xiao,Xiaodan Li,Hai‐Zhu Mo,Wubing He,Yao‐Hong Deng,Li‐Jun Lu,Yuan‐Kui Wu,Hao Liu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:54 (5): 1541-1550 被引量:12
标识
DOI:10.1002/jmri.27761
摘要

Preoperative, noninvasive discrimination of the craniopharyngioma subtypes is important because it influences the treatment strategy.To develop a radiomic model based on multiparametric magnetic resonance imaging for noninvasive discrimination of pathological subtypes of craniopharyngioma.Retrospective.A total of 164 patients from two medical centers were enrolled in this study. Patients from the first medical center were divided into a training cohort (N = 99) and an internal validation cohort (N = 33). Patients from the second medical center were used as the external independent validation cohort (N = 32).Axial T1 -weighted (T1 -w), T2 -weighted (T2 -w), contrast-enhanced T1 -weighted (CET1 -w) on 3.0 T or 1.5 T magnetic resonance scanners.Pathological subtypes (squamous papillary craniopharyngioma and adamantinomatous craniopharyngioma) were confirmed by surgery and hematoxylin and eosin staining. Optimal radiomic feature selection was performed by SelectKBest, the least absolute shrinkage and selection operator algorithm, and support vector machine (SVM) with a recursive feature elimination algorithm. Models based on each sequence or combinations of sequences were built using a SVM classifier and used to differentiate pathological subtypes of craniopharyngioma in the training cohort, internal validation, and external validation cohorts.The area under the receiver operating characteristic curve (AUC) was used to assess the diagnostic performance of the radiomic models.Seven texture features, three from T1 -w, two from T2 -w, and two from CET1 -w, were selected and used to construct the radiomic model. The AUC values of the radiomic model were 0.899, 0.810, and 0.920 in the training cohort, internal and external validation cohorts, respectively. The AUC values of the clinicoradiological model were 0.677, 0.655, and 0.671 in the training cohort, internal and external validation cohorts, respectively.The model based on radiomic features from T1 -w, T2 -w, and CET1 -w has a high discriminatory ability for pathological subtypes of craniopharyngioma.4 TECHNICAL EFFICACY: 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cc发布了新的文献求助10
刚刚
syne完成签到,获得积分0
刚刚
瑾玉完成签到,获得积分10
刚刚
韭黄完成签到,获得积分20
刚刚
1秒前
1秒前
yao完成签到,获得积分10
1秒前
朴素铁身发布了新的文献求助10
1秒前
zixian完成签到,获得积分10
2秒前
yuyu完成签到,获得积分10
2秒前
wend发布了新的文献求助10
2秒前
yelis发布了新的文献求助10
2秒前
2秒前
123发布了新的文献求助10
2秒前
橙子abcy完成签到,获得积分10
2秒前
李大爷完成签到,获得积分20
4秒前
小马同志完成签到,获得积分10
5秒前
5秒前
六点一横发布了新的文献求助10
5秒前
5秒前
koi发布了新的文献求助10
5秒前
乐乐应助daodao采纳,获得10
5秒前
tienslord完成签到,获得积分10
5秒前
无花果应助默默的橘子采纳,获得10
5秒前
皮二牛牛完成签到,获得积分10
6秒前
ZHY2023完成签到,获得积分10
6秒前
bkagyin应助amonke007采纳,获得10
6秒前
早早入眠完成签到,获得积分10
6秒前
Cynthia完成签到,获得积分10
7秒前
圆滑的铁勺完成签到,获得积分10
7秒前
7秒前
大萝贝完成签到,获得积分10
8秒前
mm完成签到,获得积分10
8秒前
华仔应助zixian采纳,获得10
8秒前
8秒前
炙热嘉懿发布了新的文献求助10
9秒前
dream完成签到 ,获得积分10
9秒前
9秒前
彭于彦祖应助冷静茉莉采纳,获得30
9秒前
清脆山晴完成签到,获得积分10
9秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3440578
求助须知:如何正确求助?哪些是违规求助? 3037115
关于积分的说明 8967390
捐赠科研通 2725549
什么是DOI,文献DOI怎么找? 1495048
科研通“疑难数据库(出版商)”最低求助积分说明 691037
邀请新用户注册赠送积分活动 687716