Modeling Seismic Network Detection Thresholds Using Production Picking Algorithms

衰减 振幅 震级(天文学) 噪音(视频) 算法 安静的 功能(生物学) 地震学 地震位置 数据挖掘 可观测性 计算机科学 实时计算 地震灾害 地质学 数学 诱发地震 人工智能 生物 图像(数学) 光学 物理 应用数学 进化生物学 天文 量子力学
作者
David C. Wilson,Emily Wolin,William L. Yeck,R. E. Anthony,A. T. Ringler
出处
期刊:Seismological Research Letters [Seismological Society]
卷期号:93 (1): 149-160 被引量:6
标识
DOI:10.1785/0220210192
摘要

Abstract Estimating the detection threshold of a seismic network (the minimum magnitude earthquake that can be reliably located) is a critical part of network design and can drive network maintenance efforts. The ability of a station to detect an earthquake is often estimated by assuming the spectral amplitude for an earthquake of a given size, assuming an attenuation relationship, and comparing the predicted amplitude with the average station background noise level. This approach has significant uncertainty because of unknown regional attenuation and complications in computing small event power spectra, and it fails to account for the specific capabilities of the automatic seismic phase picker used in monitoring. We develop a data-driven approach to determine network detection thresholds using a multiband phase picking algorithm that is currently in use at the U.S. Geological Survey National Earthquake Information Center. We apply this picking algorithm to cataloged earthquakes to determine an empirical relationship of the observability of earthquakes as a function of magnitude and distance. Using this relationship, we produce maps of detection threshold using station spatial configuration and station noise levels. We show that quiet, well-sited stations significantly increase the detection capabilities of a network compared with a network composed of many noisy stations. Because our method is data driven, it has two distinct advantages: (1) it is less dependent on theoretical assumptions of source spectra and models of regional attenuation, and (2) it can easily be applied to any seismic network. This tool allows for an objective approach to the management of stations in regional seismic networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊羊完成签到,获得积分10
1秒前
Ava应助Dr.lee采纳,获得10
1秒前
1秒前
3秒前
MYH9527应助科研通管家采纳,获得10
3秒前
SONGYEZI应助科研通管家采纳,获得20
3秒前
MYH9527应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
gcc应助正直的傲晴采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
3秒前
yyt应助科研通管家采纳,获得10
3秒前
852应助驰驰采纳,获得10
3秒前
开朗丹雪发布了新的文献求助30
4秒前
小鱼仔完成签到,获得积分20
5秒前
斯文败类应助跳跃绮菱采纳,获得10
5秒前
北冥有鱼完成签到,获得积分10
5秒前
孔雀翎发布了新的文献求助10
6秒前
小巧安柏完成签到,获得积分10
7秒前
lee完成签到,获得积分10
7秒前
8秒前
科研通AI5应助drtianyunhong采纳,获得10
8秒前
8秒前
bbbbb发布了新的文献求助10
8秒前
Cker完成签到,获得积分10
9秒前
林若给林若的求助进行了留言
9秒前
小蘑菇应助魔幻的翠容采纳,获得10
9秒前
左友铭发布了新的文献求助10
10秒前
11秒前
天天快乐应助小小温采纳,获得10
13秒前
14秒前
zuoyou发布了新的文献求助10
15秒前
YJM应助雪山飞龙采纳,获得10
15秒前
言非离完成签到 ,获得积分10
16秒前
可爱敏敏杨完成签到,获得积分10
17秒前
18秒前
19秒前
小蟹发布了新的文献求助10
20秒前
20秒前
开朗丹雪完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542895
求助须知:如何正确求助?哪些是违规求助? 3120176
关于积分的说明 9341944
捐赠科研通 2818272
什么是DOI,文献DOI怎么找? 1549447
邀请新用户注册赠送积分活动 722160
科研通“疑难数据库(出版商)”最低求助积分说明 712978