Tensor-Based Approach for Liquefied Natural Gas Leakage Detection From Surveillance Thermal Cameras: A Feasibility Study in Rural Areas

泄漏(经济) 液化天然气 背景减法 计算机科学 残余物 热的 人工智能 天然气 环境科学 工程类 废物管理 算法 像素 物理 宏观经济学 气象学 经济
作者
Junchi Bin,Choudhury A. Rahman,Shane Rogers,Zheng Liu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (12): 8122-8130 被引量:27
标识
DOI:10.1109/tii.2021.3064845
摘要

Detection of the liquefied natural gas (LNG) leakage attracts increasing attention for preventing environments and governments from severe pollution and economic loss. Existing frameworks take advantage of stationary surveillance thermal cameras to detect the LNG leakage, which comprises background subtraction and leakage classification. However, these methods are limited in rural areas due to the lack of sensitivity and accuracy. In this article, a generalized framework, i.e., tensor-based leakage detection (TBLD), is proposed to detect LNG leakage in the rural area from surveillance thermal cameras. First, the proposed TBLD takes advantage of tensor factorization to fuse thermal image and corresponding gradient maps for improving sensitivity. Additionally, a finite-state-machine is designed to maintain leakage foreground along with the video streaming. The experiments demonstrate the robust performance of TBLD in the background subtraction stage. Second, multiple classification techniques are explored in the leakage classification stage. The results suggest that the TBLD can accurately detect the LNG leakage by applying 50 layers of residual networks (ResNet50). Finally, compared with contemporary frameworks, the TBLD has consistently improved performance concerning the different distances of LNG leakage. The experimental results demonstrate the effectiveness of the proposed TBLD, which also shows the great potential of TBLD in future industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英俊的铭应助Keep采纳,获得10
2秒前
研友_yLpQrn完成签到,获得积分10
2秒前
勤奋傲蕾发布了新的文献求助10
3秒前
刘小腿发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
6秒前
7秒前
8秒前
8秒前
8秒前
besatified发布了新的文献求助10
9秒前
9秒前
隐形曼青应助方班术采纳,获得10
9秒前
烟花应助友好天空采纳,获得10
10秒前
玄学大哥完成签到,获得积分10
10秒前
YiRa关注了科研通微信公众号
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
如此发布了新的文献求助10
11秒前
Jasper应助Pengh采纳,获得10
12秒前
lsy发布了新的文献求助30
12秒前
12秒前
搞怪问筠发布了新的文献求助10
12秒前
草莓小酒完成签到,获得积分10
12秒前
范冰冰发布了新的文献求助10
13秒前
今后应助刘小腿采纳,获得10
13秒前
乐乐应助满满采纳,获得10
14秒前
所所应助计时器响了采纳,获得10
14秒前
明瀚发布了新的文献求助10
14秒前
一只猪发布了新的文献求助10
14秒前
14秒前
精忠完成签到,获得积分10
14秒前
Felix应助zp采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515723
求助须知:如何正确求助?哪些是违规求助? 3097941
关于积分的说明 9237378
捐赠科研通 2792936
什么是DOI,文献DOI怎么找? 1532767
邀请新用户注册赠送积分活动 712272
科研通“疑难数据库(出版商)”最低求助积分说明 707233