Antioxidative and Conductive Nanoparticles-Embedded Cell Niche for Neural Differentiation and Spinal Cord Injury Repair

再生(生物学) 材料科学 间充质干细胞 脊髓损伤 组织工程 PI3K/AKT/mTOR通路 细胞生物学 纳米技术 生物医学工程 信号转导 脊髓 神经科学 生物 医学
作者
Chengheng Wu,Suping Chen,Ting Zhou,Kai Wu,Zi Qiao,Yusheng Zhang,Nini Xin,Xiaoyin Liu,Dan Wei,Jing Sun,Hongrong Luo,Liangxue Zhou,Hongsong Fan
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (44): 52346-52361 被引量:57
标识
DOI:10.1021/acsami.1c14679
摘要

Following spinal cord injury (SCI), the transmission of electrical signals is interrupted, and an oxidative microenvironment is generated, hindering nerve regeneration and functional recovery. The strategies of regulating oxidative pathological microenvironment while restoring endogenous electrical signal transmission hold promise for SCI treatment. However, challenges are still faced in simply fabricating bioactive scaffolds with both antioxidation and conductivity. Herein, aiming to construct an antioxidative and conductive microenvironment for nerve regeneration, the difunctional polypyrrole (PPy) nanoparticles were developed and incorporated into bioactive collagen/hyaluronan hydrogel. Owing to the embedded PPy in hydrogel, the encapsulated bone marrow mesenchymal stem cells (BMSCs) can be protected from oxidative damage, and their neuronal differentiation was promoted by the synergy between conductivity and electrical stimulation, which is proved to be related to PI3K/Akt and the mitogen-activated protein kinase (MAPK) pathway. In SCI rats, the BMSC-laden difunctional hydrogel restored the transmission of bioelectric signals and inhibited secondary damage, thereby facilitating neurogenesis, resulting in prominent nerve regeneration and functional recovery. Overall, taking advantage of a difunctional nanomaterial to meet two essential requirements in SCI repair, this work provides intriguing insights into the design of biomaterials for nerve regeneration and tissue engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懦弱的咖啡豆完成签到,获得积分10
3秒前
早发论文完成签到 ,获得积分10
3秒前
高大的问芙完成签到,获得积分20
3秒前
RRRabbit完成签到,获得积分10
3秒前
5秒前
暴躁的嘉懿完成签到,获得积分10
6秒前
斯文败类应助川川采纳,获得10
7秒前
十月完成签到,获得积分10
9秒前
13秒前
13秒前
十一完成签到,获得积分10
14秒前
14秒前
美罗培南完成签到,获得积分10
14秒前
超级的笑蓝完成签到,获得积分10
15秒前
16秒前
tataq发布了新的文献求助10
17秒前
21秒前
xinyi完成签到,获得积分10
21秒前
22秒前
22秒前
赘婿应助tataq采纳,获得10
23秒前
王大饼发布了新的文献求助10
24秒前
杨俊锋发布了新的文献求助10
26秒前
26秒前
在水一方应助沉默的幻枫采纳,获得10
26秒前
完美世界应助niuniu采纳,获得10
27秒前
情怀应助dyy采纳,获得10
27秒前
27秒前
28秒前
跳跃的浩阑发布了新的文献求助200
29秒前
恰恰完成签到,获得积分10
31秒前
32秒前
32秒前
Bennyz发布了新的文献求助10
32秒前
养猫的路飞完成签到,获得积分10
34秒前
34秒前
从容的雨灵完成签到,获得积分10
35秒前
Orange应助背后丹妗采纳,获得10
35秒前
科研通AI5应助烂漫的幻露采纳,获得10
35秒前
慕青应助科研鸟采纳,获得10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672470
求助须知:如何正确求助?哪些是违规求助? 3228781
关于积分的说明 9781944
捐赠科研通 2939186
什么是DOI,文献DOI怎么找? 1610704
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174