Potential Use of Serum Proteomics for Monitoring COVID-19 Progression to Complement RT-PCR Detection

核酸 蛋白质组 蛋白质组学 2019年冠状病毒病(COVID-19) 实时聚合酶链反应 医学 生物信息学 内科学 疾病 生物 生物化学 传染病(医学专业) 基因
作者
Ying Zhang,Xue Cai,Weigang Ge,Donglian Wang,Guangjun Zhu,Liujia Qian,Nan Xiang,Liang Yue,Shuang Liang,Fangfei Zhang,Jing Wang,Kai Zhou,Yufen Zheng,Minjie Lin,Tong Sun,Ruijie Lu,Chao Zhang,Luang Xu,Yaoting Sun,Xiaoxu Zhou,Jing Yu,Mengge Lyu,Bo Shen,Hongguo Zhu,Jiaqin Xu,Yi Zhu,Tiannan Guo
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:21 (1): 90-100 被引量:20
标识
DOI:10.1021/acs.jproteome.1c00525
摘要

RT-PCR is the primary method to diagnose COVID-19 and is also used to monitor the disease course. This approach, however, suffers from false negatives due to RNA instability and poses a high risk to medical practitioners. Here, we investigated the potential of using serum proteomics to predict viral nucleic acid positivity during COVID-19. We analyzed the proteome of 275 inactivated serum samples from 54 out of 144 COVID-19 patients and shortlisted 42 regulated proteins in the severe group and 12 in the non-severe group. Using these regulated proteins and several key clinical indexes, including days after symptoms onset, platelet counts, and magnesium, we developed two machine learning models to predict nucleic acid positivity, with an AUC of 0.94 in severe cases and 0.89 in non-severe cases, respectively. Our data suggest the potential of using a serum protein-based machine learning model to monitor COVID-19 progression, thus complementing swab RT-PCR tests. More efforts are required to promote this approach into clinical practice since mass spectrometry-based protein measurement is not currently widely accessible in clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助彩色不评采纳,获得10
刚刚
研友_VZG7GZ应助Saven采纳,获得10
刚刚
Orange应助Saven采纳,获得10
3秒前
maox1aoxin应助岳霖风采纳,获得30
4秒前
4秒前
6秒前
6秒前
学水看山发布了新的文献求助10
10秒前
风中盼易发布了新的文献求助10
13秒前
不配.应助min采纳,获得20
14秒前
14秒前
马路完成签到 ,获得积分10
16秒前
不配.应助绿兔子采纳,获得20
19秒前
李健的小迷弟应助菲菲采纳,获得10
20秒前
搞怪芷珍应助风中盼易采纳,获得10
23秒前
iVANPENNY应助打小就帅采纳,获得10
23秒前
23秒前
丘比特应助陌上花开采纳,获得10
24秒前
24秒前
kk发布了新的文献求助10
25秒前
东方樱发布了新的文献求助10
27秒前
27秒前
wanci应助学水看山采纳,获得10
28秒前
28秒前
29秒前
yukk完成签到 ,获得积分10
31秒前
31秒前
34秒前
今后应助迅速如波采纳,获得10
34秒前
35秒前
35秒前
学水看山完成签到,获得积分10
37秒前
37秒前
蛋挞好好吃完成签到,获得积分10
37秒前
38秒前
38秒前
顾文强发布了新的文献求助10
40秒前
领导范儿应助小菜研采纳,获得30
42秒前
李存发布了新的文献求助20
42秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313711
求助须知:如何正确求助?哪些是违规求助? 2946037
关于积分的说明 8527998
捐赠科研通 2621608
什么是DOI,文献DOI怎么找? 1433953
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650651