Theoretical investigation of impact sensitivity of nitrogen rich energetic salts

化学 键离解能 量子 计算化学 分子 量子化学 离解(化学) 灵敏度(控制系统) 键能 氮气 化学物理 物理化学 有机化学 量子力学 物理 工程类 超分子化学 电子工程
作者
Gayani N. Pallewela,Ryan P. A. Bettens
出处
期刊:Computational and Theoretical Chemistry [Elsevier]
卷期号:1201: 113267-113267 被引量:8
标识
DOI:10.1016/j.comptc.2021.113267
摘要

The higher impact sensitivity of many energetic materials has become one of the major obstacles which diminishes its wide range of applications in various fields. Salt formation is an effective approach that enhances the stability of the molecules towards impact. In this study quantum mechanical calculations have been employed in order to predict the impact sensitivity trends for the series of nitrogen rich energetic salts: 3-Amino-1,2,4(4H)-oxadiazol-5-one (AOD) and 4-Nitramino-1,2,4-Triazole (NRTZ). Quantum mechanically derived criteria, namely, HOMO-LUMO energy gap, ratio of the bond dissociation energy to molecular total energy, the electrostatic potential at bond mid-point, bond topological parameters were computed, and the quality of results are assessed against experimental BAM fall hammer test results. Several sets of DFT functionals and basis sets were tested to identify the best level of theory for the selected nitrogenous salts. The results demonstrated an excellent qualitative prediction of the impact sensitivity by using CAMB3LYP/6-31G(d)/IEFPCM = water level of theory. Hence, quantum mechanical predictions are an ideal preliminary approach to design advanced energetic salts based on AOD and NRTZ with enhanced stability prior to the synthesis, which facilitates reducing the great cost and risk to safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助瑶一瑶采纳,获得10
1秒前
fmwang完成签到,获得积分10
2秒前
万能图书馆应助Zxc采纳,获得10
2秒前
Rainbow完成签到,获得积分10
2秒前
小小郭完成签到 ,获得积分10
2秒前
4秒前
Orange应助务实的犀牛采纳,获得10
4秒前
追寻飞风完成签到,获得积分10
4秒前
wenli完成签到,获得积分10
5秒前
5秒前
6秒前
Schmoo完成签到,获得积分10
7秒前
9秒前
圆圆的脑袋应助涛浪采纳,获得10
10秒前
隐形曼青应助皮皮桂采纳,获得10
11秒前
凝子老师完成签到,获得积分10
11秒前
奶糖发布了新的文献求助30
11秒前
TORCH完成签到 ,获得积分10
13秒前
李健的小迷弟应助lin采纳,获得10
13秒前
13秒前
14秒前
TT发布了新的文献求助10
14秒前
奶糖完成签到,获得积分10
17秒前
丘比特应助浪迹天涯采纳,获得10
18秒前
20秒前
20秒前
虚幻白玉发布了新的文献求助10
21秒前
清客完成签到 ,获得积分10
21秒前
传奇3应助阳阳采纳,获得10
21秒前
23秒前
皮皮桂发布了新的文献求助10
23秒前
Hello应助无奈傲菡采纳,获得10
23秒前
故意的傲玉应助FENGHUI采纳,获得10
24秒前
25秒前
科研通AI5应助nextconnie采纳,获得10
26秒前
James完成签到,获得积分10
26秒前
27秒前
Lucas应助sun采纳,获得10
28秒前
KristenStewart完成签到,获得积分10
30秒前
过时的热狗完成签到,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849