条件随机场
计算机科学
推论
事件(粒子物理)
人工智能
基线(sea)
模糊逻辑
机器学习
聚类分析
注释
供应链
领域(数学)
命名实体识别
数据挖掘
自然语言处理
任务(项目管理)
工程类
法学
系统工程
纯数学
地质学
物理
海洋学
量子力学
数学
政治学
作者
Naeem Khalid Janjua,Falak Nawaz,Daniel D. Prior
标识
DOI:10.1080/17517575.2021.1959652
摘要
In this study, we develop a novel methodology to identify supply chain disruption events using Twitter feeds in real time. Underpinned by advances in Natural Language Processing (NLP) and machine learning, we propose an approach that includes a state-of-the-art variant of Conditional Random Field (CRF) model for event annotation, location-based clustering of the annotated events, and a fuzzy inference system to evaluate supply chain risk. We validate the new approach through a text corpus derived from a Twitter data stream, which is a popular method in NLP. The results show that the proposed model outperforms the baseline model.
科研通智能强力驱动
Strongly Powered by AbleSci AI