壳聚糖
聚乙烯醇
纳米复合材料
吸附
材料科学
化学工程
非阻塞I/O
化学
纳米技术
有机化学
复合材料
催化作用
工程类
作者
Heba Ali,Taha M. Tiama,M. Ismail
标识
DOI:10.1016/j.ijbiomac.2021.07.055
摘要
The development of composite films with enhanced antibacterial and dye decolorization properties for water treatment has attracted a great attention. In this study, nickel oxide/chitosan/polyvinyl alcohol nanocomposite films containing different weight percentage of NiO nanoparticles with a dual functionality, removal of toxic dye and antibacterial properties, were prepared. Methyl orange (MO) was selected as a target pollutant. Additionally, the antimicrobial activity of the films against two Gram positive bacteria (Staphylococcus aureus and Bacillus cereus) and two Gram negative bacteria (Escherichia coli and Salmonella Typhimurium) was studied. The prepared samples were characterized by XRD, HRTEM, FESEM, ATR-FTIR, UV-Vis spectroscopy, and dielectric measurements. The morphological examination proved that the nanocomposite film has more porous structure compared to the unmodified chitosan/PVA. The antimicrobial tests indicated that the modified chitosan/PVA films have higher activity than pure chitosan/PVA toward all the tested pathogenic bacteria. The impact of the NiO amount (0.5, 1.5, 3, and 5 wt%), contact time (0-150 min), and adsorbent dose (40, 80, and 100 mg) on the removal of MO was studied. Dye adsorption results proved that the incorporation of 5 wt% NiO led to more than 2 fold increase in the dye removal percentage in comparison with the unmodified PVA/chitosan film.
科研通智能强力驱动
Strongly Powered by AbleSci AI