Image Quality Evaluation in Dual-Energy CT of the Chest, Abdomen, and Pelvis in Obese Patients With Deep Learning Image Reconstruction

医学 图像质量 迭代重建 核医学 放射科 体质指数 图像噪声 腹部 双重能量 内科学 人工智能 图像(数学) 骨矿物 计算机科学 骨质疏松症
作者
Eric Fair,Mark Profio,Naveen V. Kulkarni,Peter S Laviolette,Bret Barnes,Samuel Bobholz,Maureen Levenhagen,Robin Ausman,Michael O. Griffin,Petar Duvnjak,Adam P Zorn,W D Foley
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:46 (4): 604-611 被引量:5
标识
DOI:10.1097/rct.0000000000001316
摘要

Objective The aim of this study was to evaluate image quality in vascular and oncologic dual-energy computed tomography (CT) imaging studies performed with a deep learning (DL)–based image reconstruction algorithm in patients with body mass index of ≥30. Methods Vascular and multiphase oncologic staging dual-energy CT examinations were evaluated. Two image reconstruction algorithms were applied to the dual-energy CT data sets: standard of care Adaptive Statistical Iterative Reconstruction (ASiR-V) and TrueFidelity DL image reconstruction at 2 levels (medium and high). Subjective quality criteria were independently evaluated by 4 abdominal radiologists, and interreader agreement was assessed. Signal-to-noise ratio (SNR) and contrast-to-noise ratio were compared between image reconstruction methods. Results Forty-eight patients were included in this study, and the mean patient body mass index was 39.5 (SD, 7.36). TrueFidelity-High (DL-High) and TrueFidelity-Medium (DL-Med) image reconstructions showed statistically significant higher Likert scores compared with ASiR-V across all subjective image quality criteria (P < 0.001 for DL-High vs ASiR-V; P < 0.05 for DL-Med vs ASiR-V), and SNRs for aorta and liver were significantly higher for DL-High versus ASiR-V (P < 0.001). Contrast-to-noise ratio for aorta and SNR for aorta and liver were significantly higher for DL-Med versus ASiR-V (P < 0.05). Conclusions TrueFidelity DL image reconstruction provides improved image quality compared with ASiR-V in dual-energy CTs obtained in obese patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助拽根大恐龙采纳,获得10
2秒前
lulu发布了新的文献求助10
2秒前
ding应助我不看月亮采纳,获得10
2秒前
111完成签到 ,获得积分10
2秒前
2秒前
搞怪人杰完成签到,获得积分10
2秒前
lzl完成签到,获得积分10
2秒前
123完成签到,获得积分10
2秒前
木子小雅完成签到,获得积分20
3秒前
4秒前
李爱国应助anyycui采纳,获得10
5秒前
Sy完成签到 ,获得积分10
5秒前
张世纪完成签到,获得积分10
5秒前
小李在哪儿完成签到 ,获得积分10
6秒前
华仔应助l739744402采纳,获得10
6秒前
852应助王红玉采纳,获得10
7秒前
鸡腿发布了新的文献求助30
7秒前
舒服的月饼完成签到 ,获得积分10
8秒前
12366完成签到,获得积分10
10秒前
penguin应助lulu采纳,获得10
10秒前
10秒前
36456657应助白日梦蓝采纳,获得10
10秒前
Ling发布了新的文献求助20
11秒前
11秒前
小马有个白日梦关注了科研通微信公众号
12秒前
comosum完成签到,获得积分10
12秒前
Sy关注了科研通微信公众号
12秒前
善学以致用应助啦啦啦采纳,获得10
13秒前
lulu828完成签到,获得积分10
14秒前
15秒前
伊酒发布了新的文献求助10
15秒前
早日毕业完成签到 ,获得积分10
16秒前
Lucas应助漂亮的天宇采纳,获得30
17秒前
木木完成签到,获得积分10
17秒前
酷酷的锁发布了新的文献求助10
17秒前
18秒前
19秒前
Sove完成签到,获得积分10
19秒前
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557918
求助须知:如何正确求助?哪些是违规求助? 3132976
关于积分的说明 9400078
捐赠科研通 2833102
什么是DOI,文献DOI怎么找? 1557272
邀请新用户注册赠送积分活动 727153
科研通“疑难数据库(出版商)”最低求助积分说明 716197