Location-Refining neural network: A new deep learning-based framework for Heavy Rainfall Forecast

临近预报 计算机科学 人工神经网络 任务(项目管理) 降水 职位(财务) 预警系统 雷达 人工智能 环境科学 气象学 机器学习 数据挖掘 电信 地理 经济 管理 财务
作者
Xu Huang,Chuyao Luo,Yunming Ye,Xutao Li,Bowen Zhang
出处
期刊:Computers & Geosciences [Elsevier BV]
卷期号:166: 105152-105152 被引量:6
标识
DOI:10.1016/j.cageo.2022.105152
摘要

Precipitation nowcasting aims to predict the rainfall distribution within a short-term period. However, it pays the same attention to all locations instead of emphasizing those regions with heavy rainfall that has more threats to human activity. Therefore, we develop an important task named Heavy Rainfall Forecast (HRF), which mainly focuses on the movement and change of heavy rainfall areas. It sets aside one hour to give meteorological administration sufficient time to issue warning information. To tackle this task, firstly, we rebuild the meteorological radar dataset based on three criteria to obtain the samples involving heavy rainfall. Secondly, we propose the Location-Refining (LR) neural network to combine the advantages of the optical flow-based and deep learning-based methods in predicting higher intensity and more accurate position, respectively. LR neural network consists of a location network and a refining network. The former is responsible for the accurate predictions of position and trend of rainfall, and the later accounts for more accurately estimating the intensity. To make the model pay more attention to the high echo region, we design new loss functions and introduce auxiliary information of high echo values. A series of experiments show that our model has a significant improvement on this task. Specifically, compared with existing methods, we improve the valid mean square error by 6.4% for the threshold being 20 and 15.1% for the threshold being 30. The critical success indexes are improved by 12.8% for the threshold being 20 and 24.8% for the threshold being 30. We also improve the heidke skill score by 9.9% for the threshold being 20 and 21.4% for the threshold being 30. Furthermore, the proposed framework can be well transferred to other deep learning-based models, and improves their performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huhuhu发布了新的文献求助10
1秒前
1秒前
南风发布了新的文献求助10
1秒前
1秒前
2秒前
余味完成签到,获得积分10
2秒前
燕子发布了新的文献求助10
3秒前
Mely0203完成签到,获得积分20
4秒前
4秒前
英俊马里奥完成签到,获得积分10
5秒前
852应助张张采纳,获得10
5秒前
沐川酷酷完成签到,获得积分10
5秒前
帅气书白发布了新的文献求助10
5秒前
完美世界应助tcf采纳,获得10
6秒前
6秒前
西野完成签到,获得积分10
6秒前
旷野发布了新的文献求助10
6秒前
JamesPei应助qwenrou采纳,获得10
6秒前
7秒前
7秒前
7秒前
Hu完成签到,获得积分10
8秒前
苒ran完成签到,获得积分10
9秒前
10秒前
Kayla发布了新的文献求助30
10秒前
122发布了新的文献求助10
10秒前
10秒前
10秒前
科研小白完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
CodeCraft应助该好好吃饭采纳,获得10
12秒前
12秒前
情怀应助Mely0203采纳,获得30
14秒前
14秒前
小乔完成签到,获得积分10
15秒前
gosick发布了新的文献求助10
15秒前
现代的妍发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497551
关于积分的说明 11088037
捐赠科研通 3228178
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801230