清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Location-Refining neural network: A new deep learning-based framework for Heavy Rainfall Forecast

临近预报 计算机科学 人工神经网络 任务(项目管理) 降水 职位(财务) 预警系统 雷达 人工智能 环境科学 气象学 机器学习 数据挖掘 电信 地理 经济 管理 财务
作者
Xu Huang,Chuyao Luo,Yunming Ye,Xutao Li,Bowen Zhang
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:166: 105152-105152 被引量:6
标识
DOI:10.1016/j.cageo.2022.105152
摘要

Precipitation nowcasting aims to predict the rainfall distribution within a short-term period. However, it pays the same attention to all locations instead of emphasizing those regions with heavy rainfall that has more threats to human activity. Therefore, we develop an important task named Heavy Rainfall Forecast (HRF), which mainly focuses on the movement and change of heavy rainfall areas. It sets aside one hour to give meteorological administration sufficient time to issue warning information. To tackle this task, firstly, we rebuild the meteorological radar dataset based on three criteria to obtain the samples involving heavy rainfall. Secondly, we propose the Location-Refining (LR) neural network to combine the advantages of the optical flow-based and deep learning-based methods in predicting higher intensity and more accurate position, respectively. LR neural network consists of a location network and a refining network. The former is responsible for the accurate predictions of position and trend of rainfall, and the later accounts for more accurately estimating the intensity. To make the model pay more attention to the high echo region, we design new loss functions and introduce auxiliary information of high echo values. A series of experiments show that our model has a significant improvement on this task. Specifically, compared with existing methods, we improve the valid mean square error by 6.4% for the threshold being 20 and 15.1% for the threshold being 30. The critical success indexes are improved by 12.8% for the threshold being 20 and 24.8% for the threshold being 30. We also improve the heidke skill score by 9.9% for the threshold being 20 and 21.4% for the threshold being 30. Furthermore, the proposed framework can be well transferred to other deep learning-based models, and improves their performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ranj完成签到,获得积分10
7秒前
21秒前
50秒前
鳗鱼起眸发布了新的文献求助10
55秒前
1分钟前
chnz3636发布了新的文献求助10
1分钟前
2分钟前
theseus完成签到,获得积分10
3分钟前
3分钟前
共享精神应助帮帮我好吗采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
冬去春来完成签到 ,获得积分10
6分钟前
Jasper应助枯藤老柳树采纳,获得30
6分钟前
酷波er应助帮帮我好吗采纳,获得10
6分钟前
6分钟前
7分钟前
科研通AI2S应助白华苍松采纳,获得10
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
zhouleiwang发布了新的文献求助10
7分钟前
poki完成签到 ,获得积分10
7分钟前
8分钟前
OCDer发布了新的文献求助10
8分钟前
清爽玉米完成签到,获得积分10
9分钟前
FashionBoy应助科研通管家采纳,获得10
9分钟前
皮老师发布了新的文献求助200
10分钟前
合不着完成签到 ,获得积分10
10分钟前
11分钟前
11分钟前
风起枫落完成签到 ,获得积分10
11分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137021
求助须知:如何正确求助?哪些是违规求助? 2787992
关于积分的说明 7784214
捐赠科研通 2444073
什么是DOI,文献DOI怎么找? 1299719
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997