Study on water-assisted laser ablation mechanism based on water layer characteristics

材料科学 沟槽(工程) 水流 烧蚀 光学 激光器 图层(电子) 机械加工 水下 激光烧蚀 复合材料 地质学 岩土工程 海洋学 物理 航空航天工程 冶金 工程类
作者
Jia Zhou,Yuxing Huang,Yaowu Zhao,Hui Jiao,Qingyuan Liu,Yuhong Long
出处
期刊:Optics Communications [Elsevier]
卷期号:450: 112-121 被引量:24
标识
DOI:10.1016/j.optcom.2019.05.060
摘要

Water-assisted laser process machining process is a promising way to cut materials with less thermal damage. An investigation of different water layer characteristics of laser ablation in low-pressure water was studied. In this study, single-crystalline silicon was selected as a work sample that was grooved by using nanosecond-pulse laser ablation in two different water-assisted conditions. Finite Element (FE) modeling technique and optical transmission technique were employed to gain a better understanding of the water layer characteristics on underwater laser machining process. The groove geometry morphology was observed and analyzed. Besides, the influences of the water layer shape and thickness on the laser beam transmission were analyzed, and the impact of the flow behaviors on the groove geometries and the groove sidewall surface were also analyzed, such as the velocity and pressure of water flow. The experimental results and numerical qualitative analysis show that the main factors affecting the groove width are the water layer shape, the total pressure of the water layer, and the velocity of water flow. Below the threshold of the softening remove pressure, the water velocity plays a dominant role in the depth of the groove, that is, the groove depth decreases with the increase of the flow velocity. The water velocity and the total pressure of the water layer have essential effects on the surface morphology of the inner wall of the groove. This study helps to better understand the impact of water layer characteristics on water-assisted laser ablation and promote its potential application in the processing of hard and brittle materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叫滚滚完成签到,获得积分10
刚刚
内向秋寒发布了新的文献求助10
刚刚
1秒前
zhui发布了新的文献求助10
1秒前
xia完成签到,获得积分10
1秒前
拈花完成签到,获得积分10
1秒前
1秒前
深情安青应助欧阳小枫采纳,获得10
1秒前
刘芸芸发布了新的文献求助10
2秒前
AOI0504完成签到,获得积分10
2秒前
墨染完成签到,获得积分10
2秒前
薛厌完成签到,获得积分10
3秒前
小橙子发布了新的文献求助10
4秒前
javalin完成签到,获得积分10
4秒前
LiShin发布了新的文献求助10
4秒前
4秒前
4秒前
叫滚滚发布了新的文献求助10
5秒前
坚强的樱发布了新的文献求助10
5秒前
桐桐应助zmmmm采纳,获得10
5秒前
7秒前
小敦发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
翔哥发布了新的文献求助10
8秒前
阿航完成签到,获得积分10
8秒前
情怀应助Mrrr采纳,获得10
9秒前
9秒前
调研昵称发布了新的文献求助10
10秒前
淡定念波完成签到,获得积分10
10秒前
10秒前
卷卷王发布了新的文献求助10
11秒前
11秒前
天天快乐应助phz采纳,获得10
12秒前
lili完成签到,获得积分10
13秒前
sakurai应助通~采纳,获得10
13秒前
13秒前
13秒前
柴火烧叽发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794