Identification of differentially expressed genes and biological characteristics of colorectal cancer by integrated bioinformatics analysis

小桶 基因 生物 计算生物学 结直肠癌 基因组 癌症 生物信息学 数据库 基因表达 基因本体论 遗传学 计算机科学
作者
Guangwei Sun,Yalun Li,Yangjie Peng,Dapeng Lu,Fuqiang Zhang,Xueyang Cui,Qingyue Zhang,Li Zhuang
出处
期刊:Journal of Cellular Physiology [Wiley]
卷期号:234 (9): 15215-15224 被引量:53
标识
DOI:10.1002/jcp.28163
摘要

Colorectal cancer (CRC) ranks as one of the most common malignant tumors worldwide. Its mortality rate has remained high in recent years. Therefore, the aim of this study was to identify significant differentially expressed genes (DEGs) involved in its pathogenesis, which may be used as novel biomarkers or potential therapeutic targets for CRC. The gene expression profiles of GSE21510, GSE32323, GSE89076, and GSE113513 were downloaded from the Gene Expression Omnibus (GEO) database. After screening DEGs in each GEO data set, we further used the robust rank aggregation method to identify 494 significant DEGs including 212 upregulated and 282 downregulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed by DAVID and the KOBAS online database, respectively. These DEGs were shown to be significantly enriched in different cancer-related functions and pathways. Then, the STRING database was used to construct the protein-protein interaction network. The module analysis was performed by the MCODE plug-in of Cytoscape based on the whole network. We finally filtered out seven hub genes by the cytoHubba plug-in, including PPBP, CCL28, CXCL12, INSL5, CXCL3, CXCL10, and CXCL11. The expression validation and survival analysis of these hub genes were analyzed based on The Cancer Genome Atlas database. In conclusion, the robust DEGs associated with the carcinogenesis of CRC were screened through the GEO database, and integrated bioinformatics analysis was conducted. Our study provides reliable molecular biomarkers for screening and diagnosis, prognosis as well as novel therapeutic targets for CRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅葶完成签到 ,获得积分10
2秒前
希法完成签到,获得积分10
4秒前
彭于晏应助omkg采纳,获得10
5秒前
5秒前
wu发布了新的文献求助10
5秒前
5秒前
Nooooo完成签到,获得积分10
6秒前
和谐桐完成签到,获得积分10
8秒前
Emily发布了新的文献求助10
9秒前
9秒前
酷酷从凝发布了新的文献求助10
11秒前
情怀应助Yuanyuan采纳,获得10
11秒前
mj完成签到,获得积分10
12秒前
13秒前
李爱国应助wu采纳,获得10
13秒前
舒适安阳完成签到,获得积分10
16秒前
17秒前
17秒前
Ghost完成签到,获得积分10
19秒前
琪凯定理发布了新的文献求助10
19秒前
CDY完成签到,获得积分10
20秒前
21秒前
西西弗斯发布了新的文献求助10
24秒前
勤恳冰淇淋完成签到 ,获得积分10
25秒前
一株多肉完成签到,获得积分10
27秒前
yuwei完成签到 ,获得积分10
27秒前
山海发布了新的文献求助10
28秒前
28秒前
听话的寄灵完成签到,获得积分10
28秒前
pluto应助酷酷从凝采纳,获得10
30秒前
31秒前
丘比特应助稽TR采纳,获得10
32秒前
青衣北风发布了新的文献求助10
36秒前
荔枝完成签到 ,获得积分10
38秒前
邵洋发布了新的文献求助10
40秒前
40秒前
isonomia发布了新的文献求助50
41秒前
vampirell完成签到,获得积分0
42秒前
无名老大应助Mesa采纳,获得200
43秒前
张大星完成签到 ,获得积分10
45秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464263
求助须知:如何正确求助?哪些是违规求助? 3057568
关于积分的说明 9057665
捐赠科研通 2747637
什么是DOI,文献DOI怎么找? 1507473
科研通“疑难数据库(出版商)”最低求助积分说明 696562
邀请新用户注册赠送积分活动 696083