串联
能量转换效率
钙钛矿(结构)
锡
材料科学
带隙
化学工程
纳米技术
光电子学
复合材料
冶金
工程类
作者
Ke Xiao,Renxing Lin,Qiaolei Han,Yi Hou,Zhenyuan Qin,Hieu T. Nguyen,Jin Wen,Mingyang Wei,Vishal Yeddu,Makhsud I. Saidaminov,Yuan Gao,Xin Luo,Yurui Wang,Han Gao,Chunfeng Zhang,Jun Xu,Jia Zhu,Edward H. Sargent,Hairen Tan
出处
期刊:Nature Energy
[Springer Nature]
日期:2020-10-05
卷期号:5 (11): 870-880
被引量:575
标识
DOI:10.1038/s41560-020-00705-5
摘要
Monolithic all-perovskite tandem solar cells offer an avenue to increase power conversion efficiency beyond the limits of single-junction cells. It is an important priority to unite efficiency, uniformity and stability, yet this has proven challenging because of high trap density and ready oxidation in narrow-bandgap mixed lead–tin perovskite subcells. Here we report simultaneous enhancements in the efficiency, uniformity and stability of narrow-bandgap subcells using strongly reductive surface-anchoring zwitterionic molecules. The zwitterionic antioxidant inhibits Sn2+ oxidation and passivates defects at the grain surfaces in mixed lead–tin perovskite films, enabling an efficiency of 21.7% (certified 20.7%) for single-junction solar cells. We further obtain a certified efficiency of 24.2% in 1-cm2-area all-perovskite tandem cells and in-lab power conversion efficiencies of 25.6% and 21.4% for 0.049 cm2 and 12 cm2 devices, respectively. The encapsulated tandem devices retain 88% of their initial performance following 500 hours of operation at a device temperature of 54–60 °C under one-sun illumination in ambient conditions. Ensuring both stability and efficiency in mixed lead–tin perovskite solar cells is crucial to the development of all-perovskite tandems. Xiao et al. use an antioxidant zwitterionic molecule to suppress tin oxidation thus enabling large-area tandem cells with 24.2% efficiency and operational stability over 500 hours.
科研通智能强力驱动
Strongly Powered by AbleSci AI