Multiparametric MRI-based radiomics analysis for the prediction of breast tumor regression patterns after neoadjuvant chemotherapy

列线图 医学 乳腺癌 置信区间 无线电技术 接收机工作特性 逐步回归 回归 特征选择 肿瘤科 乳房磁振造影 新辅助治疗 癌症 放射科 内科学 人工智能 计算机科学 统计 乳腺摄影术 数学
作者
Xiaosheng Zhuang,Chi Chen,Zhenyu Liu,Liulu Zhang,Xuezhi Zhou,Minyi Cheng,Fei Ji,Teng Zhu,Chuqian Lei,Junsheng Zhang,Jingying Jiang,Jie Tian,Kun Wang
出处
期刊:Translational Oncology [Elsevier]
卷期号:13 (11): 100831-100831 被引量:21
标识
DOI:10.1016/j.tranon.2020.100831
摘要

Breast cancers show different regression patterns after neoadjuvant chemotherapy. Certain regression patterns are associated with more reliable margins in breast-conserving surgery. Our study aims to establish a nomogram based on radiomic features and clinicopathological factors to predict regression patterns in breast cancer patients. We retrospectively reviewed 144 breast cancer patients who received neoadjuvant chemotherapy and underwent definitive surgery in our center from January 2016 to December 2019. Tumor regression patterns were categorized as type 1 (concentric regression + pCR) and type 2 (multifocal residues + SD + PD) based on pathological results. We extracted 1158 multidimensional features from 2 sequences of MRI images. After feature selection, machine learning was applied to construct a radiomic signature. Clinical characteristics were selected by backward stepwise selection. The combined prediction model was built based on both the radiomic signature and clinical factors. The predictive performance of the combined prediction model was evaluated. Two radiomic features were selected for constructing the radiomic signature. Combined with two significant clinical characteristics, the combined prediction model showed excellent prediction performance, with an area under the receiver operating characteristic curve of 0.902 (95% confidence interval 0.8343–0.9701) in the primary cohort and 0.826 (95% confidence interval 0.6774–0.9753) in the validation cohort. Our study established a unique model combining a radiomic signature and clinicopathological factors to predict tumor regression patterns prior to the initiation of NAC. The early prediction of type 2 regression offers the opportunity to modify preoperative treatments or aids in determining surgical options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
meikoo发布了新的文献求助10
1秒前
1秒前
1秒前
云和发布了新的文献求助10
1秒前
hhhhhh完成签到,获得积分10
1秒前
bkagyin应助小绵羊采纳,获得30
2秒前
3秒前
orixero应助老实的艺文采纳,获得10
3秒前
Akim应助老实的艺文采纳,获得10
3秒前
3秒前
晴空发布了新的文献求助10
3秒前
4秒前
款款发布了新的文献求助10
4秒前
5秒前
酷波er应助阿宝采纳,获得10
5秒前
大陆发布了新的文献求助30
5秒前
6秒前
科研通AI2S应助wwba采纳,获得10
6秒前
建辰十五完成签到,获得积分10
7秒前
7秒前
8秒前
共享精神应助难过的雪碧采纳,获得30
8秒前
踏实晓筠完成签到,获得积分20
8秒前
XShu发布了新的文献求助10
9秒前
在水一方应助lilili采纳,获得10
9秒前
上官若男应助霸气的梦露采纳,获得10
10秒前
10秒前
hyacinth发布了新的文献求助10
10秒前
10秒前
冷静凌旋发布了新的文献求助10
10秒前
曾经的访风完成签到,获得积分20
11秒前
11秒前
12秒前
SYLH应助高高千筹采纳,获得10
12秒前
13秒前
齐桉完成签到 ,获得积分10
13秒前
云和完成签到,获得积分10
14秒前
14秒前
打打应助雪白依波采纳,获得10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540542
求助须知:如何正确求助?哪些是违规求助? 3117849
关于积分的说明 9332719
捐赠科研通 2815618
什么是DOI,文献DOI怎么找? 1547675
邀请新用户注册赠送积分活动 721099
科研通“疑难数据库(出版商)”最低求助积分说明 712445