Fabric Defect Segmentation Method Based on Deep Learning

分割 稳健性(进化) 计算机科学 人工智能 卷积神经网络 模式识别(心理学) 图像分割 过程(计算) 人工神经网络 深度学习 数据挖掘 生物化学 基因 操作系统 化学
作者
Yanqing Huang,Junfeng Jing,Zhen Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-15 被引量:78
标识
DOI:10.1109/tim.2020.3047190
摘要

Fabric defect detection plays an essential role in the textile production process, which was widely applied in the textile industry. For fabric defect detection, many algorithms have been proposed. However, lots of important problems, such as the accuracy of detection, the computational complexity of the algorithm, and data imbalance, still needed to be addressed for application in industrial production. In this article, we propose an efficient convolutional neural network for defect segmentation and detection. The design of this framework significantly alleviates the manual annotation cost of the data set; it only needs few defect samples combined with standard samples to learn the potential feature of defects and obtain the location of defects with high accuracy. The network is divided into two parts: segmentation and decision. First, the fabric data set without training is utilized as the input of the segmentation network. Then, the output of the segmentation network is applied as the raw materials for training the decision network. Finally, a well-trained network is used to obtain the location of defects with high accuracy. The proposed method only demands almost 50 defect samples to get accurate segmentation results and can achieve the requirement of real-time detection with a speed of 25 frames per second (FPS). The experimental results based on a public data set and three self-made fabric data sets show that the proposed method significantly outperforms eight state-of-the-art methods in terms of accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljc发布了新的文献求助10
刚刚
糊糊给糊糊的求助进行了留言
刚刚
哥哥喜欢格格完成签到 ,获得积分10
1秒前
2秒前
3秒前
3秒前
科研通AI5应助俊逸的翠容采纳,获得10
3秒前
图图完成签到,获得积分10
4秒前
机灵的煎蛋完成签到 ,获得积分10
4秒前
善学以致用应助Yancy采纳,获得10
4秒前
cdercder应助黄紫红采纳,获得20
5秒前
5秒前
包容诗槐完成签到,获得积分10
7秒前
茄子肉末先生完成签到 ,获得积分10
8秒前
xjh发布了新的文献求助10
9秒前
李爱国应助lxy采纳,获得10
9秒前
11秒前
12秒前
皮卡丘发布了新的文献求助10
12秒前
13秒前
hyw发布了新的文献求助10
14秒前
南山完成签到 ,获得积分10
14秒前
15秒前
cj326完成签到 ,获得积分10
17秒前
17秒前
18秒前
455关注了科研通微信公众号
18秒前
香蕉海白发布了新的文献求助10
18秒前
18秒前
南山关注了科研通微信公众号
18秒前
19秒前
19秒前
ljc完成签到,获得积分10
19秒前
lxy发布了新的文献求助10
21秒前
熹熹完成签到,获得积分10
22秒前
领导范儿应助Flori采纳,获得30
22秒前
22秒前
23秒前
Yancy完成签到,获得积分10
23秒前
英姑应助皮卡丘采纳,获得10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667802
求助须知:如何正确求助?哪些是违规求助? 3226272
关于积分的说明 9768903
捐赠科研通 2936222
什么是DOI,文献DOI怎么找? 1608316
邀请新用户注册赠送积分活动 759622
科研通“疑难数据库(出版商)”最低求助积分说明 735407