Sampling design optimization for soil mapping with random forest

随机森林 抽样设计 采样(信号处理) 拉丁超立方体抽样 统计 人口 简单随机抽样 参数统计 均方误差 模拟退火 数字土壤制图 校准 计算机科学 数学 人工智能 土壤图 算法 蒙特卡罗方法 土壤水分 环境科学 土壤科学 人口学 滤波器(信号处理) 社会学 计算机视觉
作者
Alexandre M.J.‐C. Wadoux,D.J. Brus,G.B.M. Heuvelink
出处
期刊:Geoderma [Elsevier]
卷期号:355: 113913-113913 被引量:137
标识
DOI:10.1016/j.geoderma.2019.113913
摘要

Machine learning techniques are widely employed to generate digital soil maps. The map accuracy is partly determined by the number and spatial locations of the measurements used to calibrate the machine learning model. However, determining the optimal sampling design for mapping with machine learning techniques has not yet been considered in detail in digital soil mapping studies. In this paper, we investigate sampling design optimization for soil mapping with random forest. A design is optimized using spatial simulated annealing by minimizing the mean squared prediction error (MSE). We applied this approach to mapping soil organic carbon for a part of Europe using subsamples of the LUCAS dataset. The optimized subsamples are used as input for the random forest machine learning model, using a large set of readily available environmental data as covariates. We also predicted the same soil property using subsamples selected by simple random sampling, conditioned Latin Hypercube sampling (cLHS), spatial coverage sampling and feature space coverage sampling. Distributions of the estimated population MSEs are obtained through repeated random splitting of the LUCAS dataset, serving as the population of interest, into subsets used for validation, testing and selection of calibration samples, and repeated selection of calibration samples with the various sampling designs. The differences between the medians of the MSE distributions were tested for significance using the non-parametric Mann-Whitney test. The process was repeated for different sample sizes. We also analyzed the spread of the optimized designs in both geographic and feature space to reveal their characteristics. Results show that optimization of the sampling design by minimizing the MSE is worthwhile for small sample sizes. However, an important disadvantage of sampling design optimization using MSE is that it requires known values of the soil property at all locations and as a consequence is only feasible for subsampling an existing dataset. For larger sample sizes, the effect of using an MSE optimized design diminishes. In this case, we recommend to use a sample spread uniformly in the feature (i.e. covariate) space of the most important random forest covariates. The results also show that for our case study, cLHS sampling performs worse than the other sampling designs for mapping with random forest. We stress that comparison of sampling designs for calibration by splitting the data just once is very sensitive to the data split that one happens to use if the validation set is small.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助有颗柚子采纳,获得10
刚刚
小鱼干儿发布了新的文献求助10
1秒前
哇哈哈发布了新的文献求助10
1秒前
1秒前
苗苗发布了新的文献求助10
2秒前
无花果应助薯片采纳,获得10
2秒前
卡痰的长颈鹿完成签到,获得积分10
3秒前
念l完成签到 ,获得积分10
3秒前
adi完成签到,获得积分10
3秒前
imyunxu完成签到,获得积分10
4秒前
petiteblanche发布了新的文献求助10
4秒前
杨先生发布了新的文献求助30
5秒前
jing发布了新的文献求助10
5秒前
5秒前
jewel9完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
微血管发布了新的文献求助10
6秒前
李健的粉丝团团长应助tt采纳,获得10
7秒前
薯片完成签到,获得积分10
7秒前
神途完成签到,获得积分10
8秒前
9秒前
9秒前
落寞的水蜜桃完成签到,获得积分10
9秒前
苗苗完成签到,获得积分10
9秒前
petiteblanche完成签到,获得积分10
10秒前
10秒前
10秒前
从此发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
大王叫我来巡山啊完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728534
求助须知:如何正确求助?哪些是违规求助? 5313250
关于积分的说明 15314452
捐赠科研通 4875726
什么是DOI,文献DOI怎么找? 2618947
邀请新用户注册赠送积分活动 1568530
关于科研通互助平台的介绍 1525171