Sampling design optimization for soil mapping with random forest

随机森林 抽样设计 采样(信号处理) 拉丁超立方体抽样 统计 人口 简单随机抽样 参数统计 均方误差 模拟退火 数字土壤制图 校准 计算机科学 数学 人工智能 土壤图 算法 蒙特卡罗方法 土壤水分 环境科学 土壤科学 人口学 滤波器(信号处理) 社会学 计算机视觉
作者
Alexandre M.J.‐C. Wadoux,D.J. Brus,G.B.M. Heuvelink
出处
期刊:Geoderma [Elsevier]
卷期号:355: 113913-113913 被引量:89
标识
DOI:10.1016/j.geoderma.2019.113913
摘要

Machine learning techniques are widely employed to generate digital soil maps. The map accuracy is partly determined by the number and spatial locations of the measurements used to calibrate the machine learning model. However, determining the optimal sampling design for mapping with machine learning techniques has not yet been considered in detail in digital soil mapping studies. In this paper, we investigate sampling design optimization for soil mapping with random forest. A design is optimized using spatial simulated annealing by minimizing the mean squared prediction error (MSE). We applied this approach to mapping soil organic carbon for a part of Europe using subsamples of the LUCAS dataset. The optimized subsamples are used as input for the random forest machine learning model, using a large set of readily available environmental data as covariates. We also predicted the same soil property using subsamples selected by simple random sampling, conditioned Latin Hypercube sampling (cLHS), spatial coverage sampling and feature space coverage sampling. Distributions of the estimated population MSEs are obtained through repeated random splitting of the LUCAS dataset, serving as the population of interest, into subsets used for validation, testing and selection of calibration samples, and repeated selection of calibration samples with the various sampling designs. The differences between the medians of the MSE distributions were tested for significance using the non-parametric Mann-Whitney test. The process was repeated for different sample sizes. We also analyzed the spread of the optimized designs in both geographic and feature space to reveal their characteristics. Results show that optimization of the sampling design by minimizing the MSE is worthwhile for small sample sizes. However, an important disadvantage of sampling design optimization using MSE is that it requires known values of the soil property at all locations and as a consequence is only feasible for subsampling an existing dataset. For larger sample sizes, the effect of using an MSE optimized design diminishes. In this case, we recommend to use a sample spread uniformly in the feature (i.e. covariate) space of the most important random forest covariates. The results also show that for our case study, cLHS sampling performs worse than the other sampling designs for mapping with random forest. We stress that comparison of sampling designs for calibration by splitting the data just once is very sensitive to the data split that one happens to use if the validation set is small.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
水悟子发布了新的文献求助10
1秒前
jade完成签到,获得积分10
1秒前
1秒前
niu完成签到,获得积分10
1秒前
李佳慧完成签到,获得积分10
1秒前
2秒前
炸天完成签到 ,获得积分10
2秒前
wanci应助recardo采纳,获得10
2秒前
3秒前
共享精神应助wicky采纳,获得10
3秒前
3秒前
屿霖珺儿发布了新的文献求助10
3秒前
4秒前
英俊的铭应助幽默春天采纳,获得10
4秒前
4秒前
4秒前
曲曲完成签到,获得积分10
5秒前
丰知然应助暗夜星辰采纳,获得10
5秒前
认真的傲柏完成签到,获得积分10
6秒前
RTena.完成签到,获得积分10
6秒前
lemon发布了新的文献求助10
6秒前
知世郎完成签到 ,获得积分10
7秒前
bakbak完成签到,获得积分10
7秒前
7秒前
陆绮梅发布了新的文献求助10
8秒前
小周同学完成签到,获得积分10
8秒前
尔东完成签到,获得积分10
8秒前
斯文败类应助CMD采纳,获得10
8秒前
温酒筚篥完成签到,获得积分10
8秒前
呼延子默完成签到,获得积分10
9秒前
zuoqibin关注了科研通微信公众号
9秒前
SunYilin发布了新的文献求助10
9秒前
9秒前
lcy完成签到,获得积分10
10秒前
10秒前
Billy应助Xiling采纳,获得30
11秒前
幸福胡萝卜完成签到,获得积分10
11秒前
天津中医药峰完成签到,获得积分10
11秒前
小白完成签到 ,获得积分10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Textbook of Interventional Radiology 1000
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294910
求助须知:如何正确求助?哪些是违规求助? 2930940
关于积分的说明 8449088
捐赠科研通 2603458
什么是DOI,文献DOI怎么找? 1421118
科研通“疑难数据库(出版商)”最低求助积分说明 660796
邀请新用户注册赠送积分活动 643598