Sampling design optimization for soil mapping with random forest

随机森林 抽样设计 采样(信号处理) 拉丁超立方体抽样 统计 人口 简单随机抽样 参数统计 均方误差 模拟退火 数字土壤制图 校准 计算机科学 数学 人工智能 土壤图 算法 蒙特卡罗方法 土壤水分 环境科学 土壤科学 人口学 滤波器(信号处理) 社会学 计算机视觉
作者
Alexandre M.J.‐C. Wadoux,D.J. Brus,G.B.M. Heuvelink
出处
期刊:Geoderma [Elsevier BV]
卷期号:355: 113913-113913 被引量:137
标识
DOI:10.1016/j.geoderma.2019.113913
摘要

Machine learning techniques are widely employed to generate digital soil maps. The map accuracy is partly determined by the number and spatial locations of the measurements used to calibrate the machine learning model. However, determining the optimal sampling design for mapping with machine learning techniques has not yet been considered in detail in digital soil mapping studies. In this paper, we investigate sampling design optimization for soil mapping with random forest. A design is optimized using spatial simulated annealing by minimizing the mean squared prediction error (MSE). We applied this approach to mapping soil organic carbon for a part of Europe using subsamples of the LUCAS dataset. The optimized subsamples are used as input for the random forest machine learning model, using a large set of readily available environmental data as covariates. We also predicted the same soil property using subsamples selected by simple random sampling, conditioned Latin Hypercube sampling (cLHS), spatial coverage sampling and feature space coverage sampling. Distributions of the estimated population MSEs are obtained through repeated random splitting of the LUCAS dataset, serving as the population of interest, into subsets used for validation, testing and selection of calibration samples, and repeated selection of calibration samples with the various sampling designs. The differences between the medians of the MSE distributions were tested for significance using the non-parametric Mann-Whitney test. The process was repeated for different sample sizes. We also analyzed the spread of the optimized designs in both geographic and feature space to reveal their characteristics. Results show that optimization of the sampling design by minimizing the MSE is worthwhile for small sample sizes. However, an important disadvantage of sampling design optimization using MSE is that it requires known values of the soil property at all locations and as a consequence is only feasible for subsampling an existing dataset. For larger sample sizes, the effect of using an MSE optimized design diminishes. In this case, we recommend to use a sample spread uniformly in the feature (i.e. covariate) space of the most important random forest covariates. The results also show that for our case study, cLHS sampling performs worse than the other sampling designs for mapping with random forest. We stress that comparison of sampling designs for calibration by splitting the data just once is very sensitive to the data split that one happens to use if the validation set is small.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助搞怪文轩采纳,获得10
刚刚
谦让鹏涛发布了新的文献求助10
3秒前
柯一一应助kk采纳,获得10
4秒前
柯一一应助kk采纳,获得10
4秒前
柯一一应助kk采纳,获得10
4秒前
xbx1991发布了新的文献求助10
4秒前
柯一一应助kk采纳,获得10
4秒前
柯一一应助kk采纳,获得10
4秒前
柯一一应助kk采纳,获得10
4秒前
柯一一应助kk采纳,获得10
4秒前
xkkk完成签到,获得积分10
5秒前
守仁则阳明完成签到 ,获得积分10
5秒前
SYLH应助背后海亦采纳,获得10
6秒前
斯文败类应助搞怪的怜南采纳,获得10
8秒前
8秒前
慕青应助琪玛苏采纳,获得10
9秒前
谦让鹏涛完成签到,获得积分20
9秒前
StellaZhang完成签到 ,获得积分10
10秒前
10秒前
今后应助稳重傲柔采纳,获得10
10秒前
李爱国应助xbx1991采纳,获得10
10秒前
13秒前
轻松的剑完成签到,获得积分20
13秒前
英姑应助jc采纳,获得10
13秒前
赴简发布了新的文献求助10
14秒前
晓湫发布了新的文献求助10
14秒前
15秒前
慕青应助reform采纳,获得10
15秒前
噜啦噜啦发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
18秒前
雪雪儿发布了新的文献求助10
19秒前
20秒前
妙漉发布了新的文献求助10
20秒前
星辰大海应助谦让鹏涛采纳,获得10
20秒前
20秒前
21秒前
22秒前
hi_traffic完成签到,获得积分10
22秒前
平常的老头完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959477
求助须知:如何正确求助?哪些是违规求助? 3505697
关于积分的说明 11125320
捐赠科研通 3237538
什么是DOI,文献DOI怎么找? 1789202
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802868