生物
基因复制
串联外显子复制
黑腹果蝇
遗传学
基因组
果蝇属(亚属)
毛里塔尼亚
基因
染色体
节段重复
进化生物学
基因家族
古生物学
枣属
作者
Rebekah L. Rogers,Julie M. Cridland,Ling Shao,Tina T. Hu,Peter Andolfatto,Kevin Thornton
标识
DOI:10.1093/molbev/msu124
摘要
We have used whole genome paired-end Illumina sequence data to identify tandem duplications in 20 isofemale lines of D. yakuba, and 20 isofemale lines of D. simulans and performed genome wide validation with PacBio long molecule sequencing. We identify 1,415 tandem duplications that are segregating in D. yakuba as well as 975 duplications in D. simulans, indicating greater variation in D. yakuba. Additionally, we observe high rates of secondary deletions at duplicated sites, with 8% of duplicated sites in D. simulans and 17% of sites in D. yakuba modified with deletions. These secondary deletions are consistent with the action of the large loop mismatch repair system acting to remove polymorphic tandem duplication, resulting in rapid dynamics of gain and loss in duplicated alleles and a richer substrate of genetic novelty than has been previously reported. Most duplications are present in only single strains, suggesting deleterious impacts are common. D. simulans shows larger numbers of whole gene duplications in comparison to larger proportions of gene fragments in D. yakuba. D. simulans displays an excess of high frequency variants on the X chromosome, consistent with adaptive evolution through duplications on the D. simulans X or demographic forces driving duplicates to high frequency. We identify 78 chimeric genes in D. yakuba and 38 chimeric genes in D. simulans, as well as 143 cases of recruited non-coding sequence in D. yakuba and 96 in D. simulans, in agreement with rates of chimeric gene origination in D. melanogaster. Together, these results suggest that tandem duplications often result in complex variation beyond whole gene duplications that offers a rich substrate of standing variation that is likely to contribute both to detrimental phenotypes and disease, as well as to adaptive evolutionary change.
科研通智能强力驱动
Strongly Powered by AbleSci AI