光催化
污染物
废水
环境科学
环境化学
废物管理
环境工程
化学
催化作用
工程类
生物化学
有机化学
作者
Charitha Thambiliyagodage
标识
DOI:10.1016/j.enmm.2022.100737
摘要
Water pollution caused by human activities is a monumental problem that the world is facing today. The use of polluted water for domestic, industrial, and agricultural applications creates severe hazardous issues. Therefore, decontamination of polluted water is greatly important. The advanced oxidation process is preferred to purify contaminated water as the pollutants are completely degraded to harmless products. TiO2 is the most widely researched photocatalyst due to its chemical stability, low cost and eco-friendliness. However, the use of TiO2 is limited as it is only sensitive to UV range due to its high band gap (3.0 eV for rutile) and the possible electron-hole pair recombination. TiO2 has been coupled with carbon-based materials to enhance photocatalytic activity by enhancing charge separation and visible light absorption. This review summarizes the recent use of TiO2 coupled to activated carbon, carbon nanotubes, graphene derivatives, and g-C3N4 to degrade different pollutants found in water including dyes, pesticides, pharmaceuticals, phenols and heavy metals. The advantages and disadvantages of using each carbon-based material are discussed. Further, the challenges and opportunities associated with all the materials are presented. Finally, recommendations and possible future outlooks are briefed in this review.
科研通智能强力驱动
Strongly Powered by AbleSci AI