数学
对数
分数拉普拉斯
数学物理
拉普拉斯算子
薛定谔方程
分数阶微积分
功能(生物学)
数学分析
组合数学
生物
进化生物学
出处
期刊:Differential and Integral Equations
日期:2022-11-01
卷期号:35 (11/12)
标识
DOI:10.57262/die035-1112-677
摘要
In this paper, by using the variational methods, we study the existence and concentration of positive solutions for the following fractional logarithmic Schrödinger equation $$ \epsilon^{2s}(-\Delta )^{s} u+V(x)u=u\,\text{log}\,u^{2}, \,\, x\in\mathbb{R}^{N}, $$ where $\epsilon>0$ is a parameter, $N > 2s$, $s\in(0,1)$ and $(-\Delta )^{s}$ is the fractional Laplacian, the potential $V:\mathbb{R}^{N}\rightarrow\mathbb{R}$ is a continuous function satisfying a local assumption. We generalize the result obtained by Alves and Ji [3] for the case $s=1$ to the fractional logarithmic Schrödinger equation.
科研通智能强力驱动
Strongly Powered by AbleSci AI