Computed Tomography-Based Radiomics to Predict FOXM1 Expression and Overall Survival in Patients with Clear Cell Renal Cell Carcinoma

无线电技术 肾透明细胞癌 肾细胞癌 医学 细胞 计算机断层摄影术 肿瘤科 病理 放射科 癌症研究 内科学 遗传学 生物
作者
Jingwei Zhao,Qi Zhang,Yan Chen,Xinming Zhao
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (9): 3635-3646 被引量:2
标识
DOI:10.1016/j.acra.2024.01.036
摘要

Rationale and Objectives

To establish a computed tomography (CT)-based radiomics model to predict Fork head box M1(FOXM1) expression levels and develop a combined model for prognostic prediction in patients with clear cell renal cell carcinoma (ccRCC).

Materials and Methods

A total of 529 patients were utilized to assess the prognostic significance of FOXM1 expression and were subsequently categorized into low and high FOXM1 expression groups. 184 patients with CT images were randomly divided into training and validation cohorts. Radiomics signature (Rad-score) for predicting FOXM1 expression level was developed in the training cohort. The predictive performance was evaluated using receiver operating characteristic (ROC) curves. A clinical model based on clinical factors and a combined model incorporating clinical factors and Rad-score were developed to predict ccRCC prognosis using Cox regression analyses. The concordance index(C-index) was employed to assess and compare the predictive capabilities of the Rad-score, TNM stage, clinical model, and combined model. The likelihood ratio test was used to compare the models' performance.

Results

The Rad-score demonstrated high predictive accuracy for high FOXM1 expression with areas under the ROC curves of 0.713 and 0.711 in the training and validation cohorts. In the training cohort, the C-indexes for the Rad-score, TNM Stage, clinical model, and combined model were 0.657, 0.711, 0.737, and 0.741, respectively. Correspondingly, in the validation cohort, the C-indexes were 0.670, 0.712, 0.736, and 0.745. The combined model had the highest C-index, significantly outperforming the other models.

Conclusion

The Rad-score accurately predicts FOXM1 expression levels and is an independent prognostic factor for ccRCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助ttt采纳,获得10
刚刚
重要问旋完成签到,获得积分10
刚刚
1秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得30
2秒前
老阎应助科研通管家采纳,获得30
2秒前
姜莹应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
2秒前
ED应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
思源应助科研通管家采纳,获得10
3秒前
3秒前
orixero应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
斯可完成签到,获得积分10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
wanci应助科研通管家采纳,获得10
3秒前
郁乾完成签到,获得积分10
3秒前
朱加凤完成签到,获得积分10
3秒前
NI发布了新的文献求助10
3秒前
尛海完成签到,获得积分10
3秒前
Leeon完成签到,获得积分10
4秒前
xiang完成签到,获得积分10
4秒前
5秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066