Diffusion Models for Generative Outfit Recommendation

计算机科学 业务
作者
Yiyan Xu,Wenjie Wang,Fuli Feng,Yunshan Ma,Jizhi Zhang,Xiangnan He
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.1145/3626772.3657719
摘要

Outfit Recommendation (OR) in the fashion domain has evolved through two stages: Pre-defined Outfit Recommendation and Personalized Outfit Composition. However, both stages are constrained by existing fashion products, limiting their effectiveness in addressing users' diverse fashion needs. Recently, the advent of AI-generated content provides the opportunity for OR to transcend these limitations, showcasing the potential for personalized outfit generation and recommendation. To this end, we introduce a novel task called Generative Outfit Recommendation (GOR), aiming to generate a set of fashion images and compose them into a visually compatible outfit tailored to specific users. The key objectives of GOR lie in the high fidelity, compatibility, and personalization of generated outfits. To achieve these, we propose a generative outfit recommender model named DiFashion, which empowers exceptional diffusion models to accomplish the parallel generation of multiple fashion images. To ensure three objectives, we design three kinds of conditions to guide the parallel generation process and adopt Classifier-Free-Guidance to enhance the alignment between the generated images and conditions. We apply DiFashion on both personalized Fill-In-The-Blank and GOR tasks and conduct extensive experiments on iFashion and Polyvore-U datasets. The quantitative and human-involved qualitative evaluation demonstrate the superiority of DiFashion over competitive baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助煜猪猪采纳,获得10
刚刚
小马甲应助ww采纳,获得10
刚刚
温暖烨霖完成签到,获得积分10
1秒前
2秒前
2秒前
妩媚的书易完成签到 ,获得积分10
3秒前
烟花应助北楠采纳,获得10
3秒前
zzmmlll发布了新的文献求助10
4秒前
LSY发布了新的文献求助10
4秒前
Ava应助雪落你看不见采纳,获得30
5秒前
5秒前
武雨寒完成签到,获得积分20
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
余烬22应助ttttttx采纳,获得20
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
史小菜应助科研通管家采纳,获得30
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
追寻笑寒完成签到,获得积分10
6秒前
大个应助Cris采纳,获得10
7秒前
坦率耳机应助叶耶耶采纳,获得10
7秒前
8秒前
LinLi发布了新的文献求助30
9秒前
9秒前
传奇3应助怕黑的青丝采纳,获得10
10秒前
10秒前
小马发布了新的文献求助10
11秒前
xhuryts发布了新的文献求助10
11秒前
11秒前
张三12138发布了新的文献求助10
12秒前
情怀应助小易同学采纳,获得10
12秒前
12秒前
追寻的梦凡完成签到,获得积分10
12秒前
oasissmz完成签到,获得积分10
13秒前
Oreki完成签到,获得积分10
13秒前
煜猪猪发布了新的文献求助10
14秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222211
求助须知:如何正确求助?哪些是违规求助? 2870793
关于积分的说明 8172331
捐赠科研通 2537863
什么是DOI,文献DOI怎么找? 1369824
科研通“疑难数据库(出版商)”最低求助积分说明 645597
邀请新用户注册赠送积分活动 619373