Retinal OCT biomarkers and their association with cognitive function—clinical and AI approaches

认知 疾病 认知功能衰退 生物标志物 医学 心理学 神经科学 病理 生物 痴呆 生物化学
作者
Franziska G. Rauscher,Rui Bernardes
标识
DOI:10.1007/s00347-024-01988-9
摘要

Retinal optical coherence tomography (OCT) biomarkers have the potential to serve as early, noninvasive, and cost-effective markers for identifying individuals at risk for cognitive impairments and neurodegenerative diseases. They may also aid in monitoring disease progression and evaluating the effectiveness of interventions targeting cognitive decline. The association between retinal OCT biomarkers and cognitive performance has been demonstrated in several studies, and their importance in cognitive assessment is increasingly being recognized. Machine learning (ML) is a branch of artificial intelligence (AI) with an exponential number of applications in the medical field, particularly its deep learning (DL) subset, which is widely used for the analysis of medical images. These techniques efficiently deal with novel biomarkers when their outcome for the applications of interest is unclear, e.g., for diagnosis, prognosis prediction, disease staging, or any other relevance to clinical practice. However, using AI-based tools for medical purposes must be approached with caution, despite the many efforts to address the black-box nature of such approaches, especially due to the general underperformance in datasets other than those used for their development. Retinal OCT biomarkers are promising as potential indicators for decline in cognitive function. The underlying mechanisms are currently being explored to gain deeper insights into this relationship linking retinal health and cognitive function. Insights from neurovascular coupling and retinal microvascular changes play an important role. Further research is needed to establish the validity and utility of retinal OCT biomarkers as early indicators of cognitive decline and neurodegenerative diseases in routine clinical practice. Retinal OCT biomarkers could then provide a new avenue for early detection, monitoring and intervention in cognitive impairment with the potential to improve patient care and outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨墨完成签到 ,获得积分10
刚刚
木子李发布了新的文献求助10
刚刚
盛yyyy完成签到,获得积分10
2秒前
aobacae发布了新的文献求助50
4秒前
Qianbaor应助我是苯宝宝采纳,获得30
4秒前
科研通AI5应助三木采纳,获得10
4秒前
血红蛋白关注了科研通微信公众号
7秒前
8秒前
9秒前
桐桐应助祭礼之龙采纳,获得10
9秒前
科研通AI5应助黑纸一张采纳,获得100
10秒前
10秒前
glanceofwind完成签到 ,获得积分10
11秒前
无心的秋珊完成签到 ,获得积分10
12秒前
sun完成签到,获得积分10
13秒前
NexusExplorer应助好吧不是采纳,获得10
13秒前
14秒前
Akim应助Hannah采纳,获得10
14秒前
15秒前
16秒前
三木发布了新的文献求助10
16秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
18秒前
18秒前
18秒前
19秒前
在水一方应助至秦采纳,获得10
19秒前
善学以致用应助NIHAO213采纳,获得10
20秒前
yang发布了新的文献求助10
20秒前
xiao晓发布了新的文献求助100
20秒前
jiayou完成签到,获得积分10
21秒前
Saraba发布了新的文献求助10
22秒前
清爽灰狼发布了新的文献求助10
22秒前
小蘑菇应助sun采纳,获得10
23秒前
24秒前
一一应助youy采纳,获得30
24秒前
小富婆完成签到 ,获得积分10
24秒前
26秒前
Bonjour完成签到,获得积分20
26秒前
26秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542648
求助须知:如何正确求助?哪些是违规求助? 3120011
关于积分的说明 9341267
捐赠科研通 2818101
什么是DOI,文献DOI怎么找? 1549346
邀请新用户注册赠送积分活动 722106
科研通“疑难数据库(出版商)”最低求助积分说明 712944