Co-Training Transformer for Remote Sensing Image Classification, Segmentation, and Detection

计算机科学 变压器 人工智能 分割 编码器 机器学习 加权 适应性 多任务学习 模式识别(心理学) 任务(项目管理) 操作系统 生物 物理 放射科 医学 经济 电压 量子力学 生态学 管理
作者
Qingyun Li,Yushi Chen,Xin He,Lingbo Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:5
标识
DOI:10.1109/tgrs.2024.3354783
摘要

Several fundamental remote sensing (RS) image processing tasks, including classification, segmentation, and detection, have been set to serve for manifold applications. In the RS community, the individual tasks have been studied separately for many years. However, the specialized models were only capable of a single task. They lacked the adaptability for generalizing to the other tasks. Moreover, Transformer exhibits a powerful generalization capacity because it has the property of dynamic feature weighting. Hence, there is a large potential of a uniform Transformer to learn multiple tasks simultaneously, i.e., multi-task learning (MTL). An MTL Transformer can combine knowledge from different tasks by sharing a uniform network. In this study, a general-purpose Transformer, which simultaneously processes the three tasks, is investigated for RS MTL. To build a Transformer capable of the three tasks, an MTL framework named RSCoTr is proposed. The framework uses a shared encoder to extract multi-scale features efficiently and three task-specific decoders to obtain different results. Moreover, a flexible training procedure named co-training is proposed. The MTL model is trained with multiple general data sets annotated for individual tasks. The co-training is as easy as training a specialized model for a single task. It can be developed into different learning strategies to meet various requirements. The proposed RSCoTr is trained jointly with various strategies on three challenging data sets of the three tasks. And the results demonstrate that the proposed MTL method achieves state-of-the-art performance in comparison with other competitive approaches. Code will be available at https://github.com/Li-Qingyun/RSCoTr.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贾不可发布了新的文献求助10
刚刚
英俊梦槐发布了新的文献求助30
刚刚
Xu完成签到,获得积分10
1秒前
1秒前
秀丽千山完成签到,获得积分10
1秒前
2秒前
3秒前
哈哈哈哈完成签到,获得积分10
3秒前
沧海泪发布了新的文献求助10
4秒前
小胡先森应助凤凰山采纳,获得10
4秒前
一一完成签到,获得积分10
4秒前
惠惠发布了新的文献求助10
4秒前
shotgod完成签到,获得积分20
5秒前
科研通AI5应助蕾子采纳,获得10
5秒前
happy杨完成签到 ,获得积分10
5秒前
lichaoyes发布了新的文献求助10
5秒前
5秒前
Owen应助通~采纳,获得10
5秒前
封闭货车发布了新的文献求助10
6秒前
6秒前
www发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
shotgod发布了新的文献求助10
8秒前
ling玲完成签到,获得积分10
8秒前
奔奔发布了新的文献求助10
8秒前
SweepingMonk应助虚心盼晴采纳,获得10
9秒前
10秒前
汉堡包应助XXF采纳,获得10
10秒前
wzh完成签到,获得积分10
10秒前
海底落日完成签到,获得积分20
10秒前
11秒前
科研通AI5应助123采纳,获得30
11秒前
烟花应助pi采纳,获得10
12秒前
汉堡包应助小木木壮采纳,获得10
12秒前
12秒前
yl发布了新的文献求助30
12秒前
菲菲呀发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794