Co-Training Transformer for Remote Sensing Image Classification, Segmentation, and Detection

计算机科学 变压器 人工智能 分割 编码器 机器学习 加权 适应性 多任务学习 模式识别(心理学) 任务(项目管理) 医学 物理 量子力学 电压 放射科 操作系统 生态学 管理 生物 经济
作者
Qingyun Li,Yushi Chen,Xin He,Lingbo Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:5
标识
DOI:10.1109/tgrs.2024.3354783
摘要

Several fundamental remote sensing (RS) image processing tasks, including classification, segmentation, and detection, have been set to serve for manifold applications. In the RS community, the individual tasks have been studied separately for many years. However, the specialized models were only capable of a single task. They lacked the adaptability for generalizing to the other tasks. Moreover, Transformer exhibits a powerful generalization capacity because it has the property of dynamic feature weighting. Hence, there is a large potential of a uniform Transformer to learn multiple tasks simultaneously, i.e., multi-task learning (MTL). An MTL Transformer can combine knowledge from different tasks by sharing a uniform network. In this study, a general-purpose Transformer, which simultaneously processes the three tasks, is investigated for RS MTL. To build a Transformer capable of the three tasks, an MTL framework named RSCoTr is proposed. The framework uses a shared encoder to extract multi-scale features efficiently and three task-specific decoders to obtain different results. Moreover, a flexible training procedure named co-training is proposed. The MTL model is trained with multiple general data sets annotated for individual tasks. The co-training is as easy as training a specialized model for a single task. It can be developed into different learning strategies to meet various requirements. The proposed RSCoTr is trained jointly with various strategies on three challenging data sets of the three tasks. And the results demonstrate that the proposed MTL method achieves state-of-the-art performance in comparison with other competitive approaches. Code will be available at https://github.com/Li-Qingyun/RSCoTr.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
智博36发布了新的文献求助10
1秒前
隐形曼青应助Limanman采纳,获得10
1秒前
英姑应助a成采纳,获得10
2秒前
田様应助song采纳,获得10
2秒前
3秒前
Singularity发布了新的文献求助10
3秒前
阿尼亚发布了新的文献求助10
3秒前
畅快幻柏完成签到,获得积分20
4秒前
玛卡巴卡完成签到 ,获得积分20
4秒前
4秒前
科研探索者完成签到,获得积分10
6秒前
小丛雨发布了新的文献求助10
6秒前
7秒前
7秒前
白洛发布了新的文献求助10
9秒前
9秒前
香蕉觅云应助科研顺利采纳,获得10
9秒前
11秒前
fangzhang发布了新的文献求助10
11秒前
Ava应助Singularity采纳,获得10
12秒前
yana发布了新的文献求助10
13秒前
Limanman发布了新的文献求助10
14秒前
苦逼科研狗完成签到,获得积分10
16秒前
16秒前
103921wjk发布了新的文献求助20
19秒前
20秒前
21秒前
伊丽莎白完成签到,获得积分10
21秒前
24秒前
24秒前
NXZNXZ完成签到 ,获得积分10
24秒前
zyun发布了新的文献求助10
28秒前
打打应助fuchao采纳,获得10
29秒前
Mo发布了新的文献求助10
30秒前
十二月完成签到 ,获得积分10
31秒前
32秒前
TAO完成签到,获得积分10
33秒前
加菲丰丰应助ty采纳,获得20
33秒前
无辜牛青完成签到,获得积分10
33秒前
刘松发布了新的文献求助10
34秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139135
求助须知:如何正确求助?哪些是违规求助? 2790050
关于积分的说明 7793436
捐赠科研通 2446426
什么是DOI,文献DOI怎么找? 1301124
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102