已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning modeling of ribosome profiling reveals regulatory underpinnings of translatome and interprets disease variants

平动调节 生物 核糖体分析 计算生物学 生物信息学 翻译(生物学) 五素未翻译区 翻译效率 遗传学 编码区 基因 真核翻译 信使核糖核酸
作者
Jialin He,Lei Xiong,Shaohui Shi,Chengyu Li,Kexuan Chen,Qianchen Fang,Jiuhong Nan,Ke Ding,Jingyun Li,Yuanhui Mao,Carles A. Boix,Xinyang Hu,Manolis Kellis,Xushen Xiong
标识
DOI:10.1101/2024.02.26.582217
摘要

Gene expression involves transcription and translation. Despite large datasets and increasingly powerful methods devoted to calculating genetic variants' effects on transcription, discrepancy between mRNA and protein levels hinders the systematic interpretation of the regulatory effects of disease-associated variants. Accurate models of the sequence determinants of translation are needed to close this gap and to interpret disease-associated variants that act on translation. Here, we present Translatomer, a multimodal transformer framework that predicts cell-type-specific translation from mRNA expression and gene sequence. We train Translatomer on 33 tissues and cell lines, and show that the inclusion of sequence substantially improves the prediction of ribosome profiling signal, indicating that Translatomer captures sequence-dependent translational regulatory information. Translatomer achieves accuracies of 0.72 to 0.80 for de novo prediction of cell-type-specific ribosome profiling. We develop an in silico mutagenesis tool to estimate mutational effects on translation and demonstrate that variants associated with translation regulation are evolutionarily constrained, both within the human population and across species. Notably, we identify cell-type-specific translational regulatory mechanisms independent of eQTLs for 3,041 non-coding and synonymous variants associated with complex diseases, including Alzheimer's disease, schizophrenia, and congenital heart disease. Translatomer accurately models the genetic underpinnings of translation, bridging the gap between mRNA and protein levels, and providing valuable mechanistic insights toward mapping "missing regulation" in disease genetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虞美人完成签到 ,获得积分10
2秒前
3秒前
半个柚子发布了新的文献求助10
3秒前
Orange应助庾稀采纳,获得10
3秒前
Cancey发布了新的文献求助10
3秒前
Owen应助zqz采纳,获得10
5秒前
5秒前
6秒前
7秒前
景初柔发布了新的文献求助10
8秒前
Ttttt发布了新的文献求助10
8秒前
斯文败类应助李白采纳,获得10
8秒前
joanna0932发布了新的文献求助20
9秒前
翻山越岭觅小溪关注了科研通微信公众号
9秒前
kkh完成签到,获得积分10
9秒前
朴实凡柔完成签到,获得积分10
10秒前
曾医生完成签到,获得积分10
10秒前
11秒前
12秒前
x1nger完成签到,获得积分10
12秒前
xx发布了新的文献求助10
14秒前
15秒前
杨枝甘露发布了新的文献求助10
16秒前
16秒前
18秒前
19秒前
zqz发布了新的文献求助10
19秒前
21秒前
wanci应助正直易绿采纳,获得10
21秒前
22秒前
23秒前
小牛牛发布了新的文献求助10
25秒前
26秒前
xixi完成签到 ,获得积分10
28秒前
青椒炒肉完成签到,获得积分20
28秒前
Owen应助geogydeniel采纳,获得10
29秒前
白小黑发布了新的文献求助10
30秒前
筒子哥完成签到,获得积分10
30秒前
青椒炒肉发布了新的文献求助10
31秒前
所所应助tinghua采纳,获得10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133654
求助须知:如何正确求助?哪些是违规求助? 2784660
关于积分的说明 7768042
捐赠科研通 2439912
什么是DOI,文献DOI怎么找? 1297086
科研通“疑难数据库(出版商)”最低求助积分说明 624856
版权声明 600791