Exploration and verification of circulating diagnostic biomarkers in osteoarthritis based on machine learning

接收机工作特性 逻辑回归 支持向量机 置信区间 骨关节炎 Lasso(编程语言) 医学 曲线下面积 人工智能 机器学习 生物标志物 内科学 肿瘤科 计算机科学 病理 生物 生物化学 替代医学 万维网
作者
Xinyu Wang,Tianyi Liu,Yueyang Sheng,Cheng Qiu,Yanzhuo Zhang,Yan Liu,Chengai Wu
出处
期刊:Frontiers in Genetics [Frontiers Media SA]
卷期号:16
标识
DOI:10.3389/fgene.2025.1513675
摘要

Background Osteoarthritis (OA) is a prevalent chronic joint condition. This study sought to explore potential diagnostic biomarkers for OA and assess their relevance in clinical samples. Methods We searched the GEO database for peripheral blood leukocytes expression profiles of OA patients as a training set to conduct differentially expressed gene (DEG) analysis. Two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE), were employed to identify candidate biomarkers for OA diagnosis. The performance was assessed using receiver operating characteristic (ROC) curves, and the areas under the curve (AUCs) with 95% confidence interval (CI) were calculated. Furthermore, we gathered clinical peripheral blood samples from healthy donors and OA patients (validation set) to validate our findings. Small interfering RNA and CCK8 proliferation assay were used for experimental verification. Results A total of 31 DEGs were discovered, and the machine learning screening found five DEGs that were considered to be candidate biomarkers. Notably, BIRC2 had a very good discriminatory effect among the five candidate biomarkers, with an AUC of 0.814 (95% CI: 0.697-0.915). In our validation set, results showed that the levels of BIRC2 and SEH1L were remarkably higher in healthy donors than OA patients, consistent with the results of the training set. SEH1L owned the largest AUC of 0.964 (95% CI: 0.855-1.000). BIRC2 also displayed a larger AUC of 0.836 (95% CI: 0.618-1.000) in the training set. Knockdown of these two genes could significantly suppress human chondrocyte proliferation. Conclusion Two novel biomarkers, SEH1L and BIRC2, were indicated to have the capacity to differentiate healthy people from OA patients at the peripheral level. Experiments have shown that knockdown of these two genes could inhibit human chondrocyte proliferation, as verified by cell proliferation assays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Leukocyte完成签到 ,获得积分10
刚刚
明小丽完成签到,获得积分10
刚刚
赘婿应助不可思宇采纳,获得10
刚刚
朝韵完成签到 ,获得积分10
1秒前
1秒前
于显沣发布了新的文献求助10
1秒前
2秒前
慕青应助坤坤采纳,获得10
2秒前
2秒前
3秒前
沐夕完成签到,获得积分10
3秒前
3秒前
4秒前
饱满帽子发布了新的文献求助10
5秒前
英姑应助热心的雨竹采纳,获得10
6秒前
研友_VZG7GZ应助PualYoung采纳,获得10
6秒前
ziwei完成签到,获得积分10
7秒前
陨_0614发布了新的文献求助10
7秒前
Sunny发布了新的文献求助10
7秒前
科目三应助舒适路人采纳,获得10
8秒前
x笑一完成签到,获得积分10
8秒前
5Cu完成签到,获得积分10
8秒前
W.发布了新的文献求助30
8秒前
Huuu完成签到,获得积分10
9秒前
开朗寻凝发布了新的文献求助10
9秒前
Jasper应助x5kyi采纳,获得10
10秒前
11秒前
12秒前
BYW完成签到,获得积分10
12秒前
科研通AI2S应助EwhenQ采纳,获得10
12秒前
酷波er应助小白采纳,获得10
13秒前
13秒前
敏感的豪英完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
16秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3523305
求助须知:如何正确求助?哪些是违规求助? 3104159
关于积分的说明 9269324
捐赠科研通 2801091
什么是DOI,文献DOI怎么找? 1537387
邀请新用户注册赠送积分活动 715489
科研通“疑难数据库(出版商)”最低求助积分说明 708842