Fault-Diagnosis Method for Rotating Machinery Based on SVMD Entropy and Machine Learning

断层(地质) 计算机科学 支持向量机 振动 熵(时间箭头) 停工期 人工智能 极限学习机 特征向量 控制理论(社会学) 算法 控制工程 工程类 人工神经网络 物理 控制(管理) 量子力学 地震学 地质学 操作系统
作者
Lijun Zhang,Yuejian Zhang,Guangfeng Li
出处
期刊:Algorithms [MDPI AG]
卷期号:16 (6): 304-304 被引量:4
标识
DOI:10.3390/a16060304
摘要

Rolling bearings and gears are important components of rotating machinery. Their operating condition affects the operation of the equipment. Fault in the accessory directly leads to equipment downtime or a series of adverse reactions in the system, which brings enormous pecuniary loss to the institution. Hence, it is of great significance to detect the operating status of rolling bearings and gears for fault diagnosis. At present, the vibration method is considered to be the most common method for fault diagnosis, a method that analyzes the equipment by collecting vibration signals. However, rotating-machinery fault diagnosis is challenging due to the need to select effective fault feature vectors, use appropriate machine-learning classification methods, and achieve accurate fault diagnosis. To solve this problem, this paper illustrates a new fault-diagnosis method combining successive variational-mode decomposition (SVMD) entropy values and machine learning. First, the simulation signal and the real fault signal are used to analyze and compare the variational-mode decomposition (VMD) and SVMD methods. The comparison results prove that SVMD can be a useful method for fault diagnosis. Then, these two methods are utilized to extract the energy entropy and fuzzy entropy of the gearbox dataset of Southeast University (SEU), respectively. The feature vector and multiple machine-learning classification models are constructed for failure-mode identification. The experimental-analysis results successfully verify the effectiveness of the combined SVMD entropy and machine-learning approach for rotating-machinery fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助江城子采纳,获得10
3秒前
小全发布了新的文献求助10
3秒前
4秒前
CipherSage应助zhan采纳,获得10
5秒前
隐形的大有完成签到,获得积分10
5秒前
英俊的铭应助等待的凝芙采纳,获得10
8秒前
9秒前
王大好人发布了新的文献求助10
9秒前
9秒前
tianya完成签到,获得积分10
11秒前
chili完成签到,获得积分10
12秒前
奋斗VS完成签到 ,获得积分20
12秒前
思源应助xfxx采纳,获得10
14秒前
Starwalker发布了新的文献求助30
14秒前
SYLH应助MUWENYING采纳,获得10
17秒前
guoran完成签到,获得积分10
17秒前
包容绿海完成签到,获得积分10
19秒前
搞怪乌完成签到,获得积分10
20秒前
ww007完成签到,获得积分10
20秒前
20秒前
Letter完成签到 ,获得积分10
20秒前
黄茹应助shae_2022采纳,获得10
21秒前
斯文败类应助优美的世开采纳,获得10
22秒前
23秒前
汉堡包应助大魁采纳,获得10
24秒前
24秒前
24秒前
xfxx完成签到,获得积分10
26秒前
29秒前
xfxx发布了新的文献求助10
30秒前
迪丽热巴发布了新的文献求助10
32秒前
今后应助Labubu采纳,获得10
32秒前
秉文完成签到,获得积分10
32秒前
胖蛋蛋蛋完成签到,获得积分10
33秒前
34秒前
35秒前
张时婕完成签到 ,获得积分10
37秒前
38秒前
38秒前
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469901
求助须知:如何正确求助?哪些是违规求助? 3063149
关于积分的说明 9081549
捐赠科研通 2753389
什么是DOI,文献DOI怎么找? 1510844
邀请新用户注册赠送积分活动 698104
科研通“疑难数据库(出版商)”最低求助积分说明 698028