材料科学
相间
电解质
锂(药物)
金属有机骨架
降级(电信)
储能
化学工程
纳米技术
枝晶(数学)
电极
物理化学
计算机科学
有机化学
吸附
功率(物理)
内分泌学
数学
量子力学
几何学
物理
电信
医学
生物
工程类
遗传学
化学
作者
Yaoyao Li,Wei Chen,Tianyu Lei,Haijiao Xie,Anjun Hu,Fan Wang,Jianwen Huang,Xianfu Wang,Yin Hu,Jing Wang,Jie Xiong
标识
DOI:10.1016/j.ensm.2023.04.004
摘要
Lithium metal batteries (LMB) hold the key to unlock the utilization of future technologies with inflating energy consumption demands. However, the long-term cycling performance of LMB under high current density and areal capacity is inferior due to the dendrite growth aggravated by the continuous unnecessary reconstruction induced by instable phases in solid-electrolyte interphase (SEI). Herein, F-functionalized metal-organic framework (MOF), i.e., UIO-66-F4, is employed to enable the enrichment of LiF and suppress the reconstruction of SEI. Moreover, the functionalized MOF can modify the solvation structure of Li+ at the interface, improving the efficiency of Li+ transfer. As a result, an ultra-stable cycling performance for more than 2000 h at 3 mA cm−2 under 6 mAh cm−2 for Li||Li symmetrical cell is achieved, properly covering the capacity range for practical application of LMB. The soft-short risk and the rapid capacity degradation in high-loading Li-S pouch cell are eliminated, benefiting its application as next-generation energy storage system.
科研通智能强力驱动
Strongly Powered by AbleSci AI