亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cancer immunotherapy response prediction from multi-modal clinical and image data using semi-supervised deep learning

免疫疗法 医学 杠杆(统计) 癌症 人工智能 癌症免疫疗法 肿瘤科 医学物理学 机器学习 内科学 计算机科学
作者
Xi Wang,Yuming Jiang,Hao Chen,Taojun Zhang,Zhen Han,Chuanli Chen,Qingyu Yuan,Wenjun Xiong,Wei Wang,Guoxin Li,Pheng‐Ann Heng,Ruijiang Li
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:186: 109793-109793 被引量:2
标识
DOI:10.1016/j.radonc.2023.109793
摘要

Immunotherapy is a standard treatment for many tumor types. However, only a small proportion of patients derive clinical benefit and reliable predictive biomarkers of immunotherapy response are lacking. Although deep learning has made substantial progress in improving cancer detection and diagnosis, there is limited success on the prediction of treatment response. Here, we aim to predict immunotherapy response of gastric cancer patients using routinely available clinical and image data.We present a multi-modal deep learning radiomics approach to predict immunotherapy response using both clinical data and computed tomography images. The model was trained using 168 advanced gastric cancer patients treated with immunotherapy. To overcome limitations of small training data, we leverage an additional dataset of 2,029 patients who did not receive immunotherapy in a semi-supervised framework to learn intrinsic imaging phenotypes of the disease. We evaluated model performance in two independent cohorts of 81 patients treated with immunotherapy.The deep learning model achieved area under receiver operating characteristics curve (AUC) of 0.791 (95% CI 0.633-0.950) and 0.812 (95% CI 0.669-0.956) for predicting immunotherapy response in the internal and external validation cohorts. When combined with PD-L1 expression, the integrative model further improved the AUC by 4-7% in absolute terms.The deep learning model achieved promising performance for predicting immunotherapy response from routine clinical and image data. The proposed multi-modal approach is general and can incorporate other relevant information to further improve prediction of immunotherapy response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
28秒前
我是站长才怪给是小赞啊的求助进行了留言
35秒前
49秒前
搜集达人应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Fiona完成签到 ,获得积分10
1分钟前
优雅夕阳完成签到 ,获得积分10
1分钟前
1分钟前
宗沛槐完成签到,获得积分10
2分钟前
2分钟前
Demi_Ming完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
韩帅发布了新的文献求助10
3分钟前
Owen应助韩帅采纳,获得10
3分钟前
孟筱完成签到,获得积分10
3分钟前
HYQ完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
米老鼠de完成签到,获得积分10
4分钟前
调研昵称发布了新的文献求助20
5分钟前
充电宝应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
Wei发布了新的文献求助10
5分钟前
puzhongjiMiQ发布了新的文献求助10
6分钟前
6分钟前
金刚经应助puzhongjiMiQ采纳,获得10
6分钟前
万能图书馆应助puzhongjiMiQ采纳,获得10
6分钟前
大模型应助puzhongjiMiQ采纳,获得10
6分钟前
qu蛐应助puzhongjiMiQ采纳,获得10
6分钟前
香蕉觅云应助puzhongjiMiQ采纳,获得10
6分钟前
6分钟前
自信号厂完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265472
求助须知:如何正确求助?哪些是违规求助? 2905543
关于积分的说明 8334005
捐赠科研通 2575810
什么是DOI,文献DOI怎么找? 1400135
科研通“疑难数据库(出版商)”最低求助积分说明 654702
邀请新用户注册赠送积分活动 633532