A Scalable Framework for Closed-Loop Neuromodulation with Deep Learning

神经调节 计算机科学 循环(图论) 人工智能 深度学习 闭环 可扩展性 刺激 神经科学 心理学 数学 控制工程 操作系统 组合数学 工程类
作者
Nigel Gebodh,Vladimir Miskovic,Sarah Laszlo,Abhishek Datta,Marom Bikson
标识
DOI:10.1101/2023.01.18.524615
摘要

Closed-loop neuromodulation measures dynamic neural or physiological activity to optimize interventions for clinical and nonclinical behavioral, cognitive, wellness, attentional, or general task performance enhancement. Conventional closed-loop stimulation approaches can contain biased biomarker detection (decoders and error-based triggering) and stimulation-type application. We present and verify a novel deep learning framework for designing and deploying flexible, data-driven, automated closed-loop neuromodulation that is scalable using diverse datasets, agnostic to stimulation technology (supporting multi-modal stimulation: tACS, tDCS, tFUS, TMS), and without the need for personalized ground-truth performance data. Our approach is based on identified periods of responsiveness - detected states that result in a change in performance when stimulation is applied compared to no stimulation. To demonstrate our framework, we acquire, analyze, and apply a data-driven approach to our open sourced GX dataset, which includes concurrent physiological (ECG, EOG) and neuronal (EEG) measures, paired with continuous vigilance/attention-fatigue tracking, and High-Definition transcranial electrical stimulation (HD-tES). Our framework's decision process for intervention application identified 88.26% of trials as correct applications, showed potential improvement with varying stimulation types, or missed opportunities to stimulate, whereas 11.25% of trials were predicted to stimulate at inopportune times. With emerging datasets and stimulation technologies, our unifying and integrative framework; leveraging deep learning (Convolutional Neural Networks - CNNs); demonstrates the adaptability and feasibility of automated multimodal neuromodulation for both clinical and nonclinical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HearbaRtNDY完成签到,获得积分10
2秒前
偏偏海完成签到,获得积分10
4秒前
王建平完成签到 ,获得积分10
4秒前
星星完成签到,获得积分10
4秒前
lxl完成签到,获得积分10
5秒前
芽芽豆完成签到 ,获得积分10
8秒前
zhigaow完成签到,获得积分10
8秒前
Lucky小M完成签到,获得积分10
9秒前
摸鱼校尉完成签到,获得积分0
9秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得30
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
star应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
star应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
Zx_1993应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
香蕉诗蕊应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
Zx_1993应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
香蕉诗蕊应助科研通管家采纳,获得10
12秒前
star应助科研通管家采纳,获得10
12秒前
12秒前
orixero应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
香蕉诗蕊应助科研通管家采纳,获得10
12秒前
kusicfack完成签到,获得积分10
12秒前
hihihihihi完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539376
求助须知:如何正确求助?哪些是违规求助? 4626086
关于积分的说明 14597704
捐赠科研通 4566975
什么是DOI,文献DOI怎么找? 2503736
邀请新用户注册赠送积分活动 1481601
关于科研通互助平台的介绍 1453181