A Scalable Framework for Closed-Loop Neuromodulation with Deep Learning

神经调节 计算机科学 循环(图论) 人工智能 深度学习 闭环 可扩展性 刺激 神经科学 心理学 数学 控制工程 操作系统 组合数学 工程类
作者
Nigel Gebodh,Vladimir Miskovic,Sarah Laszlo,Abhishek Datta,Marom Bikson
标识
DOI:10.1101/2023.01.18.524615
摘要

Closed-loop neuromodulation measures dynamic neural or physiological activity to optimize interventions for clinical and nonclinical behavioral, cognitive, wellness, attentional, or general task performance enhancement. Conventional closed-loop stimulation approaches can contain biased biomarker detection (decoders and error-based triggering) and stimulation-type application. We present and verify a novel deep learning framework for designing and deploying flexible, data-driven, automated closed-loop neuromodulation that is scalable using diverse datasets, agnostic to stimulation technology (supporting multi-modal stimulation: tACS, tDCS, tFUS, TMS), and without the need for personalized ground-truth performance data. Our approach is based on identified periods of responsiveness - detected states that result in a change in performance when stimulation is applied compared to no stimulation. To demonstrate our framework, we acquire, analyze, and apply a data-driven approach to our open sourced GX dataset, which includes concurrent physiological (ECG, EOG) and neuronal (EEG) measures, paired with continuous vigilance/attention-fatigue tracking, and High-Definition transcranial electrical stimulation (HD-tES). Our framework's decision process for intervention application identified 88.26% of trials as correct applications, showed potential improvement with varying stimulation types, or missed opportunities to stimulate, whereas 11.25% of trials were predicted to stimulate at inopportune times. With emerging datasets and stimulation technologies, our unifying and integrative framework; leveraging deep learning (Convolutional Neural Networks - CNNs); demonstrates the adaptability and feasibility of automated multimodal neuromodulation for both clinical and nonclinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taff完成签到,获得积分20
1秒前
受伤丹妗发布了新的文献求助10
1秒前
1秒前
犹豫的晓兰完成签到,获得积分20
2秒前
3秒前
3秒前
英俊的铭应助JUAN采纳,获得10
3秒前
3秒前
yangben完成签到,获得积分10
3秒前
科研通AI2S应助被动科研采纳,获得10
3秒前
3秒前
4秒前
快乐旭尧完成签到,获得积分10
4秒前
5秒前
赘婿应助灰灰采纳,获得10
5秒前
jstagey发布了新的文献求助10
6秒前
善学以致用应助戚薇采纳,获得10
6秒前
低语yaa发布了新的文献求助10
6秒前
清脆愫完成签到 ,获得积分0
6秒前
jinyu完成签到,获得积分10
6秒前
NATURECATCHER完成签到,获得积分10
7秒前
Ainhoa发布了新的文献求助10
8秒前
LLY完成签到,获得积分20
8秒前
小罗在无锡完成签到 ,获得积分10
8秒前
zwy109发布了新的文献求助10
8秒前
机灵紫萱完成签到,获得积分10
8秒前
酷波er应助後知後孓采纳,获得10
9秒前
可爱的函函应助受伤丹妗采纳,获得10
9秒前
9秒前
敏敏发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
丘比特应助wsgdhz采纳,获得10
12秒前
Hoyshin应助Sui采纳,获得20
13秒前
kangnakangna发布了新的文献求助20
13秒前
共享精神应助芋泥桃桃采纳,获得10
13秒前
支盼夏完成签到,获得积分10
13秒前
科目三应助jstagey采纳,获得10
14秒前
科研通AI5应助徐昊雯采纳,获得10
14秒前
wz发布了新的文献求助10
14秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709