A Scalable Framework for Closed-Loop Neuromodulation with Deep Learning

神经调节 计算机科学 循环(图论) 人工智能 深度学习 闭环 可扩展性 刺激 神经科学 心理学 数学 控制工程 操作系统 组合数学 工程类
作者
Nigel Gebodh,Vladimir Miskovic,Sarah Laszlo,Abhishek Datta,Marom Bikson
标识
DOI:10.1101/2023.01.18.524615
摘要

Closed-loop neuromodulation measures dynamic neural or physiological activity to optimize interventions for clinical and nonclinical behavioral, cognitive, wellness, attentional, or general task performance enhancement. Conventional closed-loop stimulation approaches can contain biased biomarker detection (decoders and error-based triggering) and stimulation-type application. We present and verify a novel deep learning framework for designing and deploying flexible, data-driven, automated closed-loop neuromodulation that is scalable using diverse datasets, agnostic to stimulation technology (supporting multi-modal stimulation: tACS, tDCS, tFUS, TMS), and without the need for personalized ground-truth performance data. Our approach is based on identified periods of responsiveness - detected states that result in a change in performance when stimulation is applied compared to no stimulation. To demonstrate our framework, we acquire, analyze, and apply a data-driven approach to our open sourced GX dataset, which includes concurrent physiological (ECG, EOG) and neuronal (EEG) measures, paired with continuous vigilance/attention-fatigue tracking, and High-Definition transcranial electrical stimulation (HD-tES). Our framework's decision process for intervention application identified 88.26% of trials as correct applications, showed potential improvement with varying stimulation types, or missed opportunities to stimulate, whereas 11.25% of trials were predicted to stimulate at inopportune times. With emerging datasets and stimulation technologies, our unifying and integrative framework; leveraging deep learning (Convolutional Neural Networks - CNNs); demonstrates the adaptability and feasibility of automated multimodal neuromodulation for both clinical and nonclinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Moter发布了新的文献求助10
刚刚
胡茶茶发布了新的文献求助20
刚刚
1秒前
完美世界应助珊珊来迟采纳,获得10
2秒前
2秒前
2秒前
fangshb发布了新的文献求助10
3秒前
huagu722发布了新的文献求助10
3秒前
3秒前
傻傻的语海完成签到,获得积分10
4秒前
4秒前
小喻完成签到,获得积分10
4秒前
南希发布了新的文献求助10
4秒前
思源应助柠檬采纳,获得10
6秒前
7秒前
CS发布了新的文献求助10
7秒前
qq完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
残酷日光发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
科研通AI2S应助忘课文采纳,获得10
11秒前
代代完成签到 ,获得积分10
13秒前
nieanicole发布了新的文献求助10
13秒前
fmwang完成签到,获得积分10
14秒前
Jasper应助莹yy采纳,获得10
14秒前
liu发布了新的文献求助10
14秒前
sunyuice完成签到 ,获得积分10
16秒前
小张发布了新的文献求助10
16秒前
英俊的铭应助mimi采纳,获得10
19秒前
19秒前
威武的麦片完成签到,获得积分10
19秒前
leo完成签到,获得积分10
21秒前
小二郎应助liu采纳,获得10
21秒前
23秒前
24秒前
立秋呀完成签到,获得积分10
24秒前
高分求助中
Востребованный временем 2500
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422301
求助须知:如何正确求助?哪些是违规求助? 3022634
关于积分的说明 8901789
捐赠科研通 2710031
什么是DOI,文献DOI怎么找? 1486283
科研通“疑难数据库(出版商)”最低求助积分说明 686983
邀请新用户注册赠送积分活动 682206