细胞凋亡
巨噬细胞极化
癌症研究
信号转导
瘢痕疙瘩
转化生长因子
巨噬细胞
程序性细胞死亡
细胞生物学
化学
生物
医学
生物化学
病理
体外
作者
Heng Zhou,Pengfei Yang,Tianyi Zhang,Oliver Kepp,Yanxian Ren,Ningzu Jiang,Ruifeng Liu,Jin Li,Chenghao Li
标识
DOI:10.1016/j.bbadis.2024.167499
摘要
Keloids, characterized by excessive extracellular matrix (ECM) deposition and aberrant fibrous tissue proliferation, present significant therapeutic challenges due to their recalcitrant and recurrent nature. This study explores the efficacy of Carbon Ion Radiotherapy (CIRT) as a novel therapeutic approach for keloids, focusing on its impact on fibroblast proliferation, apoptosis induction, immunogenic cell death (ICD), macrophage polarization, and the TGF-β/SMAD signaling pathway. Utilizing a murine model of keloid formed by subcutaneous injection of zeocin in C57BL/6 mice, we demonstrated that CIRT effectively reduces collagenous fiber synthesis and collagen production in keloid tissues. Further, CIRT was shown to inhibit keloid fibroblast proliferation and to induce apoptosis, as evidenced by increased expression of apoptosis-related proteins and confirmed through flow cytometry and TUNEL assay. Notably, CIRT induced mitochondrial stress, leading to enhanced immunogenicity of cell death, characterized by increased expression of ICD markers and secretion of interferon-γ. Additionally, CIRT promoted a shift from M2 to M1 macrophage polarization, potentially reducing TGF-β release and mitigating ECM deposition. Our findings suggest that CIRT mediates its therapeutic effects through the inhibition of the TGF-β/SMAD signaling pathway, thereby attenuating ECM formation and offering a promising avenue for keloid treatment. This study underscores the potential of CIRT as an innovative strategy for managing keloids, highlighting its multifaceted impact on key cellular processes involved in keloid pathogenesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI