LENAS: Learning-Based Neural Architecture Search and Ensemble for 3-D Radiotherapy Dose Prediction

计算机科学 集成学习 推论 机器学习 强化学习 人工智能 人工神经网络 过程(计算) 架空(工程) 编码(集合论) 块(置换群论) 深度学习 几何学 数学 集合(抽象数据类型) 程序设计语言 操作系统
作者
Yi Lin,Yanfei Liu,Hao Chen,Xin Yang,Kai Ma,Yefeng Zheng,Kwang‐Ting Cheng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (10): 5795-5805 被引量:3
标识
DOI:10.1109/tcyb.2024.3390769
摘要

Radiation therapy treatment planning requires balancing the delivery of the target dose while sparing normal tissues, making it a complex process. To streamline the planning process and enhance its quality, there is a growing demand for knowledge-based planning (KBP). Ensemble learning has shown impressive power in various deep learning tasks, and it has great potential to improve the performance of KBP. However, the effectiveness of ensemble learning heavily depends on the diversity and individual accuracy of the base learners. Moreover, the complexity of model ensembles is a major concern, as it requires maintaining multiple models during inference, leading to increased computational cost and storage overhead. In this study, we propose a novel learning-based ensemble approach named LENAS, which integrates neural architecture search with knowledge distillation for 3-D radiotherapy dose prediction. Our approach starts by exhaustively searching each block from an enormous architecture space to identify multiple architectures that exhibit promising performance and significant diversity. To mitigate the complexity introduced by the model ensemble, we adopt the teacher–student paradigm, leveraging the diverse outputs from multiple learned networks as supervisory signals to guide the training of the student network. Furthermore, to preserve high-level semantic information, we design a hybrid loss to optimize the student network, enabling it to recover the knowledge embedded within the teacher networks. The proposed method has been evaluated on two public datasets: 1) OpenKBP and 2) AIMIS. Extensive experimental results demonstrate the effectiveness of our method and its superior performance to the state-of-the-art methods. Code: github.com/hust-linyi/LENAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
母广明完成签到,获得积分10
刚刚
zhuzhu发布了新的文献求助10
刚刚
年轻灯泡发布了新的文献求助10
刚刚
蒙塔啦发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
涨芝士完成签到 ,获得积分10
2秒前
戚俶发布了新的文献求助10
2秒前
Lucien发布了新的文献求助10
3秒前
辛勤的孤容完成签到,获得积分10
3秒前
今后应助眨眨眼采纳,获得10
3秒前
万事胜意完成签到,获得积分20
4秒前
4秒前
西番雅发布了新的文献求助10
4秒前
左丘冥应助年糕采纳,获得10
4秒前
wanci应助11886采纳,获得10
4秒前
核动力牛马完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助难过酸奶采纳,获得10
5秒前
九次方完成签到,获得积分10
6秒前
二丙完成签到 ,获得积分10
6秒前
索马里烈火完成签到,获得积分10
6秒前
虚幻的涵柏完成签到,获得积分10
6秒前
GLCGLCGLCGLC完成签到,获得积分10
7秒前
与桉完成签到,获得积分10
7秒前
byron发布了新的文献求助10
7秒前
英姑应助lllllll采纳,获得10
7秒前
8秒前
8秒前
9秒前
Koi完成签到 ,获得积分10
9秒前
狂野飞瑶发布了新的文献求助10
9秒前
10秒前
10秒前
领导范儿应助路人采纳,获得10
10秒前
Zert完成签到,获得积分10
10秒前
跳跃火车完成签到,获得积分10
10秒前
年轻灯泡完成签到,获得积分10
11秒前
小谢发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540108
求助须知:如何正确求助?哪些是违规求助? 3117659
关于积分的说明 9331633
捐赠科研通 2815308
什么是DOI,文献DOI怎么找? 1547522
邀请新用户注册赠送积分活动 721033
科研通“疑难数据库(出版商)”最低求助积分说明 712411