Pathological Voice Detection Based on Phase Reconstitution and Convolutional Neural Network

卷积神经网络 计算机科学 模式识别(心理学) 人工智能 语音识别 稳健性(进化) 生物化学 基因 化学
作者
Deli Fu,Xue‐Hui Zhang,Dandan Chen,Weiping Hu
出处
期刊:Journal of Voice [Elsevier]
被引量:3
标识
DOI:10.1016/j.jvoice.2022.08.028
摘要

The nonlinear dynamic features can effectively describe the acoustic characteristics of normal and pathological voice. In this paper, the phase space reconstruction and convolution neural network are used to classify the normal and pathological voice. The phase space information of normal and pathological voice is reconstructed using delay time and embedding dimension, the one-dimensional signal is converted to a two-dimensional matrix, and the reconstructed trajectory graph sample of the signal is generated. The trajectory graph samples are used as the input of the VGG-like convolutional neural network, and the graphical features are extracted to achieve a classification of normal and pathological voice. In order to overcome the lack of clinical data, a data enhancement scheme is used. The experiment which classifies the normal and pathological voice is carried out on three pathological databases respectively, i.e. the Massachusetts eye and ear infirmary (MEEI) database, Saarbrücken voice database (SVD) database, and a clinical database collected by the authors. Five-fold cross validation is used and the average recognition rates on the three databases are 99.42%, 97.30% and 95.88% respectively. The average recognition rates are 96.04% and 92.27% for normal, vocal fold paralysis and vocal fold non-paralysis voice in MEEI database and SVD database. The experimental results show that the method has high classification recognition rate and good robustness, and has certain universal applicability for the recognition of the normal and pathological voice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助dmm采纳,获得10
刚刚
zhangxq完成签到,获得积分10
刚刚
小柠檬完成签到,获得积分10
刚刚
CCD发布了新的文献求助10
1秒前
1秒前
咚咚发布了新的文献求助10
1秒前
陈1完成签到 ,获得积分20
2秒前
3秒前
飞云发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
sss发布了新的文献求助10
4秒前
周益浩发布了新的文献求助10
5秒前
汤帅臣完成签到,获得积分10
5秒前
5秒前
111发布了新的文献求助10
5秒前
文静的立果完成签到,获得积分20
5秒前
静静完成签到,获得积分10
5秒前
早早应助CCD采纳,获得20
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
Yee发布了新的文献求助30
8秒前
科目三应助cc66采纳,获得10
9秒前
lm发布了新的文献求助10
9秒前
LPH01发布了新的文献求助10
9秒前
大胆诗云发布了新的文献求助10
9秒前
无极微光应助张雯雯采纳,获得20
10秒前
南风南下发布了新的文献求助10
10秒前
10秒前
11秒前
循循完成签到,获得积分10
11秒前
11秒前
共享精神应助忧虑的安青采纳,获得10
12秒前
12秒前
打打应助Yanhai采纳,获得10
12秒前
英俊的铭应助111采纳,获得10
12秒前
CCD完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513523
求助须知:如何正确求助?哪些是违规求助? 4607732
关于积分的说明 14506652
捐赠科研通 4543272
什么是DOI,文献DOI怎么找? 2489491
邀请新用户注册赠送积分活动 1471450
关于科研通互助平台的介绍 1443447