Pathological Voice Detection Based on Phase Reconstitution and Convolutional Neural Network

卷积神经网络 计算机科学 模式识别(心理学) 人工智能 语音识别 稳健性(进化) 生物化学 化学 基因
作者
Deli Fu,Xue‐Hui Zhang,Dandan Chen,Weiping Hu
出处
期刊:Journal of Voice [Elsevier BV]
被引量:3
标识
DOI:10.1016/j.jvoice.2022.08.028
摘要

The nonlinear dynamic features can effectively describe the acoustic characteristics of normal and pathological voice. In this paper, the phase space reconstruction and convolution neural network are used to classify the normal and pathological voice. The phase space information of normal and pathological voice is reconstructed using delay time and embedding dimension, the one-dimensional signal is converted to a two-dimensional matrix, and the reconstructed trajectory graph sample of the signal is generated. The trajectory graph samples are used as the input of the VGG-like convolutional neural network, and the graphical features are extracted to achieve a classification of normal and pathological voice. In order to overcome the lack of clinical data, a data enhancement scheme is used. The experiment which classifies the normal and pathological voice is carried out on three pathological databases respectively, i.e. the Massachusetts eye and ear infirmary (MEEI) database, Saarbrücken voice database (SVD) database, and a clinical database collected by the authors. Five-fold cross validation is used and the average recognition rates on the three databases are 99.42%, 97.30% and 95.88% respectively. The average recognition rates are 96.04% and 92.27% for normal, vocal fold paralysis and vocal fold non-paralysis voice in MEEI database and SVD database. The experimental results show that the method has high classification recognition rate and good robustness, and has certain universal applicability for the recognition of the normal and pathological voice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
rk发布了新的文献求助12
1秒前
2秒前
杨金城完成签到,获得积分10
2秒前
田园完成签到,获得积分10
2秒前
小蘑菇应助无限小松鼠采纳,获得10
2秒前
科研通AI6应助万慧采纳,获得100
3秒前
4秒前
狗尾巴草发布了新的文献求助10
5秒前
金毛上将完成签到,获得积分10
5秒前
6秒前
谷谷完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
充电宝应助Leah采纳,获得10
7秒前
爱吃姜的面条完成签到,获得积分10
8秒前
domingo发布了新的文献求助30
8秒前
沉默的靖儿完成签到 ,获得积分10
9秒前
wanci应助快乐小狗采纳,获得10
10秒前
卡卡光波完成签到,获得积分10
10秒前
虚心的老头完成签到,获得积分10
10秒前
Ava应助Orange采纳,获得10
10秒前
玄音完成签到,获得积分10
11秒前
zzw完成签到,获得积分10
12秒前
12秒前
14秒前
15秒前
15秒前
15秒前
15秒前
Akim应助bhappy21采纳,获得10
17秒前
妮妮完成签到,获得积分10
18秒前
20秒前
20秒前
Foura发布了新的文献求助10
21秒前
21秒前
kobegirl发布了新的文献求助10
21秒前
科研通AI5应助sxmt123456789采纳,获得10
21秒前
Bake发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192038
求助须知:如何正确求助?哪些是违规求助? 4375147
关于积分的说明 13623731
捐赠科研通 4229284
什么是DOI,文献DOI怎么找? 2319783
邀请新用户注册赠送积分活动 1318375
关于科研通互助平台的介绍 1268503