Pathological Voice Detection Based on Phase Reconstitution and Convolutional Neural Network

卷积神经网络 计算机科学 模式识别(心理学) 人工智能 语音识别 稳健性(进化) 生物化学 基因 化学
作者
Deli Fu,Xue‐Hui Zhang,Dandan Chen,Weiping Hu
出处
期刊:Journal of Voice [Elsevier BV]
被引量:3
标识
DOI:10.1016/j.jvoice.2022.08.028
摘要

The nonlinear dynamic features can effectively describe the acoustic characteristics of normal and pathological voice. In this paper, the phase space reconstruction and convolution neural network are used to classify the normal and pathological voice. The phase space information of normal and pathological voice is reconstructed using delay time and embedding dimension, the one-dimensional signal is converted to a two-dimensional matrix, and the reconstructed trajectory graph sample of the signal is generated. The trajectory graph samples are used as the input of the VGG-like convolutional neural network, and the graphical features are extracted to achieve a classification of normal and pathological voice. In order to overcome the lack of clinical data, a data enhancement scheme is used. The experiment which classifies the normal and pathological voice is carried out on three pathological databases respectively, i.e. the Massachusetts eye and ear infirmary (MEEI) database, Saarbrücken voice database (SVD) database, and a clinical database collected by the authors. Five-fold cross validation is used and the average recognition rates on the three databases are 99.42%, 97.30% and 95.88% respectively. The average recognition rates are 96.04% and 92.27% for normal, vocal fold paralysis and vocal fold non-paralysis voice in MEEI database and SVD database. The experimental results show that the method has high classification recognition rate and good robustness, and has certain universal applicability for the recognition of the normal and pathological voice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Unfair发布了新的文献求助10
2秒前
小明同学完成签到,获得积分10
2秒前
科研通AI6应助陶醉寒蕾采纳,获得10
3秒前
群山发布了新的文献求助10
3秒前
luojimao发布了新的文献求助10
3秒前
于凡完成签到,获得积分10
4秒前
完美世界应助精明的信封采纳,获得10
4秒前
5秒前
5秒前
汉堡包应助风清扬采纳,获得10
6秒前
6秒前
8秒前
wtf52018完成签到,获得积分10
9秒前
10秒前
chlc6973完成签到,获得积分10
11秒前
耶耶耶发布了新的文献求助50
11秒前
11秒前
12秒前
12秒前
Source发布了新的文献求助10
12秒前
浮游应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
暗月青影应助科研通管家采纳,获得10
13秒前
鸣笛应助科研通管家采纳,获得30
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
14秒前
14秒前
浮游应助ikun采纳,获得10
14秒前
14秒前
14秒前
Q_Q发布了新的文献求助10
14秒前
15秒前
JamesPei应助Wonder采纳,获得10
15秒前
15秒前
别拿暗恋当饭吃完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601124
求助须知:如何正确求助?哪些是违规求助? 4010920
关于积分的说明 12418075
捐赠科研通 3690904
什么是DOI,文献DOI怎么找? 2034732
邀请新用户注册赠送积分活动 1068013
科研通“疑难数据库(出版商)”最低求助积分说明 952626