Pathological Voice Detection Based on Phase Reconstitution and Convolutional Neural Network

卷积神经网络 计算机科学 模式识别(心理学) 人工智能 语音识别 稳健性(进化) 生物化学 化学 基因
作者
Deli Fu,Xue‐Hui Zhang,Dandan Chen,Weiping Hu
出处
期刊:Journal of Voice [Elsevier]
被引量:3
标识
DOI:10.1016/j.jvoice.2022.08.028
摘要

The nonlinear dynamic features can effectively describe the acoustic characteristics of normal and pathological voice. In this paper, the phase space reconstruction and convolution neural network are used to classify the normal and pathological voice. The phase space information of normal and pathological voice is reconstructed using delay time and embedding dimension, the one-dimensional signal is converted to a two-dimensional matrix, and the reconstructed trajectory graph sample of the signal is generated. The trajectory graph samples are used as the input of the VGG-like convolutional neural network, and the graphical features are extracted to achieve a classification of normal and pathological voice. In order to overcome the lack of clinical data, a data enhancement scheme is used. The experiment which classifies the normal and pathological voice is carried out on three pathological databases respectively, i.e. the Massachusetts eye and ear infirmary (MEEI) database, Saarbrücken voice database (SVD) database, and a clinical database collected by the authors. Five-fold cross validation is used and the average recognition rates on the three databases are 99.42%, 97.30% and 95.88% respectively. The average recognition rates are 96.04% and 92.27% for normal, vocal fold paralysis and vocal fold non-paralysis voice in MEEI database and SVD database. The experimental results show that the method has high classification recognition rate and good robustness, and has certain universal applicability for the recognition of the normal and pathological voice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大秀子完成签到,获得积分10
刚刚
1秒前
隐形元绿发布了新的文献求助10
1秒前
经竺完成签到,获得积分10
1秒前
荣荣完成签到,获得积分10
2秒前
Nature完成签到 ,获得积分10
3秒前
cccchen完成签到,获得积分10
3秒前
3秒前
xzn1123完成签到,获得积分0
4秒前
free完成签到,获得积分10
4秒前
郭mm发布了新的文献求助10
4秒前
catherine完成签到,获得积分10
5秒前
5秒前
李健的小迷弟应助zx采纳,获得10
5秒前
Peter_Zhu完成签到,获得积分10
6秒前
初亦非发布了新的文献求助10
6秒前
gqp完成签到,获得积分10
6秒前
李志明完成签到,获得积分10
6秒前
zzz完成签到 ,获得积分10
7秒前
7秒前
QIU完成签到 ,获得积分10
7秒前
jbear完成签到 ,获得积分10
7秒前
8秒前
biye应助ohh采纳,获得30
8秒前
HAha给HAha的求助进行了留言
8秒前
mmm完成签到 ,获得积分10
8秒前
不安囧完成签到,获得积分10
9秒前
隐形元绿完成签到,获得积分10
9秒前
Akim应助Likyliky采纳,获得10
9秒前
大个应助yiyiji采纳,获得10
9秒前
10秒前
ahmin发布了新的文献求助10
10秒前
林子觽完成签到,获得积分10
11秒前
CC完成签到 ,获得积分20
11秒前
12秒前
zx完成签到,获得积分10
12秒前
12秒前
领导范儿应助经竺采纳,获得10
14秒前
orchid完成签到,获得积分10
14秒前
飞向天空的牛完成签到,获得积分10
14秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068596
求助须知:如何正确求助?哪些是违规求助? 2722493
关于积分的说明 7477698
捐赠科研通 2369542
什么是DOI,文献DOI怎么找? 1256421
科研通“疑难数据库(出版商)”最低求助积分说明 609576
版权声明 596835