已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic epileptic seizure detection using MSA-DCNN and LSTM techniques with EEG signals

计算机科学 脑电图 人工智能 模式识别(心理学) 自编码 癫痫发作 特征提取 卷积神经网络 分类器(UML) 深度学习 小波 信号(编程语言) 语音识别 机器学习 神经科学 心理学 程序设计语言
作者
M. Anita,A. Meena Kowshalya
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121727-121727 被引量:16
标识
DOI:10.1016/j.eswa.2023.121727
摘要

To identify epilepsy, Electroencephalography (EEG) is an important and common tool used to study the electrical activity of the human brain. The machine learning-based classifier is utilized to detect the seizure by manually extracting the features from the EEG signals in previous works. Though, these effective benefits have been proved already with automatic feature extraction, they are unable to achieve the classification of multiple classes. Meanwhile, real-time epileptic seizure detection is unable to keep the capacity because the identifiable EGG is too long. Hence, this paper is decided to develop an enhanced deep learning architecture with EEG signal for performing automatic epileptic seizure detection. The EEG signal is collected from the standard datasets. The Fourier-Bessel Series Expansion-Based Empirical Wavelet Transform (FBSE-EWT) method is used to decompose the signal from the gathered data. In feature extraction, the decomposed signals are used and while extracting the signal features, the autoencoder is involved in that process. To reduce the computational overload, the relief-F feature ranking method is used for choosing the important signal features. The Long Short Term Memory (LSTM) and Multi-Scale Atrous-based Deep Convolutional Neural Networks (MSA-DCNN) are used that is named as Hybrid Deep Scheme (HDS) to detect epileptic seizures with the top-ranked features for epileptic seizure classification. The Black Widow Optimization (BWO) and the Spider Monkey Optimization (SMO) are combined to generate Adaptive Spider Monkey Black Widow Optimization (ASMBWO) that is employed to perform the parameter tuning into a classification technique. Using different measures, the experimental analysis is done between the conventional epileptic seizure detection and the proposed model to establish an enhanced performance of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助YHK采纳,获得10
1秒前
ASD123发布了新的文献求助10
1秒前
科研通AI40应助WoooU采纳,获得10
5秒前
风韵犹存母猪完成签到 ,获得积分10
6秒前
Tumumu完成签到,获得积分10
6秒前
文欣完成签到 ,获得积分10
7秒前
小禾一定行完成签到 ,获得积分10
7秒前
9秒前
CodeCraft应助糟糕的蜡烛采纳,获得10
9秒前
面包完成签到 ,获得积分10
10秒前
勤劳怜寒发布了新的文献求助10
10秒前
吴兰田完成签到,获得积分10
10秒前
Ge完成签到 ,获得积分10
11秒前
坦率的乐蕊完成签到 ,获得积分10
11秒前
CRYLK完成签到 ,获得积分10
11秒前
12秒前
归尘发布了新的文献求助10
12秒前
Doraemon完成签到 ,获得积分10
13秒前
火星的雪完成签到 ,获得积分10
13秒前
13秒前
子翱完成签到 ,获得积分10
13秒前
13秒前
LANER完成签到 ,获得积分10
14秒前
14秒前
晚意完成签到 ,获得积分10
15秒前
耶格尔完成签到 ,获得积分10
16秒前
勤劳怜寒完成签到,获得积分10
16秒前
17秒前
成就书雪完成签到,获得积分10
17秒前
牛马哥完成签到,获得积分10
18秒前
19秒前
哈哈哈完成签到 ,获得积分10
19秒前
奋斗哈基米完成签到 ,获得积分10
19秒前
Paopaoxuan应助勤劳怜寒采纳,获得10
20秒前
WoooU发布了新的文献求助10
20秒前
21秒前
CipherSage应助sue402采纳,获得10
21秒前
lixiniverson完成签到 ,获得积分10
21秒前
陈道哥完成签到 ,获得积分10
21秒前
22秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471302
求助须知:如何正确求助?哪些是违规求助? 3064297
关于积分的说明 9087901
捐赠科研通 2754992
什么是DOI,文献DOI怎么找? 1511689
邀请新用户注册赠送积分活动 698575
科研通“疑难数据库(出版商)”最低求助积分说明 698423