已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Radiomics based predictive modeling of rectal toxicity in prostate cancer patients undergoing radiotherapy: CT and MRI comparison

医学 接收机工作特性 无线电技术 放射治疗 前列腺癌 逻辑回归 磁共振成像 随机森林 放射科 前列腺 核医学 特征选择 人工智能 癌症 计算机科学 内科学
作者
Hossein Hassaninejad,Hamid Abdollahi,Iraj Abedi,Alireza Amouheidari,Mohamad Bagher Tavakoli
出处
期刊:Physical and Engineering Sciences in Medicine [Springer Nature]
卷期号:46 (4): 1353-1363 被引量:1
标识
DOI:10.1007/s13246-023-01260-5
摘要

Rectal toxicity is one of the common side effects after radiotherapy in prostate cancer patients. Radiomics is a non-invasive and low-cost method for developing models of predicting radiation toxicity that does not have the limitations of previous methods. These models have been developed using individual patients' information and have reliable and acceptable performance. This study was conducted by evaluating the radiomic features of computed tomography (CT) and magnetic resonance (MR) images and using machine learning (ML) methods to predict radiation-induced rectal toxicity.Seventy men with pathologically confirmed prostate cancer, eligible for three-dimensional radiation therapy (3DCRT) participated in this prospective trial. Rectal wall CT and MR images were used to extract first-order, shape-based, and textural features. The least absolute shrinkage and selection operator (LASSO) was used for feature selection. Classifiers such as Random Forest (RF), Decision Tree (DT), Logistic Regression (LR), and K-Nearest Neighbors (KNN) were used to create models based on radiomic, dosimetric, and clinical data alone or in combination. The area under the curve (AUC) of the receiver operating characteristic curve (ROC), accuracy, sensitivity, and specificity were used to assess each model's performance.The best outcomes were achieved by the radiomic features of MR images in conjunction with clinical and dosimetric data, with a mean of AUC: 0.79, accuracy: 77.75%, specificity: 82.15%, and sensitivity: 67%.This research showed that as radiomic signatures for predicting radiation-induced rectal toxicity, MR images outperform CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAA咸鱼批发完成签到 ,获得积分10
9秒前
10秒前
11秒前
zzj1996发布了新的文献求助30
15秒前
15秒前
祁问儿完成签到 ,获得积分10
15秒前
寒雨发布了新的文献求助10
16秒前
热水养花完成签到 ,获得积分10
17秒前
悦耳诗筠完成签到 ,获得积分10
19秒前
Doraemon完成签到 ,获得积分10
19秒前
Qi完成签到,获得积分10
21秒前
25秒前
26秒前
DY发布了新的文献求助10
30秒前
Ldq完成签到 ,获得积分10
37秒前
38秒前
wbs13521完成签到,获得积分10
40秒前
崔洪瑞完成签到,获得积分10
40秒前
希望天下0贩的0应助寒雨采纳,获得30
41秒前
long发布了新的文献求助10
42秒前
zzj1996完成签到,获得积分10
44秒前
51秒前
long发布了新的文献求助10
52秒前
shubido完成签到,获得积分10
57秒前
iAlvinz完成签到,获得积分10
58秒前
酷波er应助科研通管家采纳,获得10
59秒前
哲别发布了新的文献求助200
59秒前
科研通AI5应助科研通管家采纳,获得10
59秒前
科研通AI5应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
iNk应助科研通管家采纳,获得10
1分钟前
iNk应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
Xiaoxiao应助科研通管家采纳,获得10
1分钟前
sdniuidifod完成签到,获得积分10
1分钟前
养乐多敬你完成签到 ,获得积分10
1分钟前
科研通AI2S应助long采纳,获得10
1分钟前
sdniuidifod发布了新的文献求助30
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671167
求助须知:如何正确求助?哪些是违规求助? 3228098
关于积分的说明 9778325
捐赠科研通 2938347
什么是DOI,文献DOI怎么找? 1609853
邀请新用户注册赠送积分活动 760473
科研通“疑难数据库(出版商)”最低求助积分说明 735962