A novel spatiotemporal 3D CNN framework with multi-task learning for efficient structural damage detection

计算机科学 卷积神经网络 任务(项目管理) 人工智能 学习迁移 还原(数学) 模式识别(心理学) 深度学习 帧(网络) 计算 机器学习 算法 数学 电信 几何学 管理 经济
作者
Sadeq Kord,Touraj Taghikhany,Mohammad Akbari
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (4): 2270-2287 被引量:4
标识
DOI:10.1177/14759217231206178
摘要

In recent years, convolutional neural networks (CNNs) have demonstrated promising results in detecting structural damage. However, their architectures often overlook spatial and temporal effects simultaneously. This limitation can result in the loss of valuable information and an incapability to fully capture the complexity of the data, ultimately leading to reduced accuracy and suboptimal performance. This study proposes an intuitive three-dimensional CNN architecture that takes into account vibration history along with sensor spatial relations based on their relative positions. Furthermore, a multi-task learning (MTL) approach is suggested, which is a powerful approach for performing multiple tasks with a single network. The proposed 3D CNN method has been employed to detect single and double damage cases in an experimental steel frame through conventional classification alongside the transfer learning (TL). Moreover, MTL is used to detect single and double damage scenarios with a single unified network, which evaluates damage presence in separate tasks. The 3D CNN fulfilled state-of-the-art performance and 100% accuracy in detecting structural damage in almost all experiments. Additionally, the MTL model achieved promising results even in the presence of severe imbalanced classes of data. Furthermore, it was observed that the utilization of TL resulted in a notable reduction of computation time by 68% and the number of trainable parameters by 90% with the same level of accuracy in double-damage cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Felixsun发布了新的文献求助10
4秒前
HiQ发布了新的文献求助10
4秒前
666发布了新的文献求助10
5秒前
5秒前
隐形曼青应助啦啦啦啦啦采纳,获得10
7秒前
weiwei完成签到,获得积分10
8秒前
9秒前
等待雪瑶关注了科研通微信公众号
9秒前
10秒前
丰富的听云完成签到,获得积分10
12秒前
jzhou88完成签到,获得积分10
13秒前
HiQ完成签到,获得积分0
13秒前
淡淡紫山完成签到,获得积分10
16秒前
16秒前
xiaowu发布了新的文献求助10
16秒前
水水完成签到,获得积分10
16秒前
Good39发布了新的文献求助10
16秒前
FashionBoy应助Felixsun采纳,获得10
17秒前
18秒前
科研小民工应助不懈奋进采纳,获得30
18秒前
20秒前
浅斟低唱发布了新的文献求助10
21秒前
浅笑完成签到,获得积分10
22秒前
科研通AI5应助Good39采纳,获得10
22秒前
占那个完成签到 ,获得积分10
25秒前
25秒前
该房地产个人的完成签到,获得积分10
26秒前
hyhy发布了新的文献求助10
29秒前
充电宝应助科研通管家采纳,获得10
31秒前
领导范儿应助射天狼采纳,获得10
31秒前
1+1应助科研通管家采纳,获得10
31秒前
田様应助科研通管家采纳,获得30
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
小蘑菇应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得30
31秒前
1+1应助科研通管家采纳,获得10
31秒前
小马甲应助科研通管家采纳,获得10
31秒前
刘荻萩应助科研通管家采纳,获得20
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671635
求助须知:如何正确求助?哪些是违规求助? 3228335
关于积分的说明 9779690
捐赠科研通 2938645
什么是DOI,文献DOI怎么找? 1610206
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093