A novel spatiotemporal 3D CNN framework with multi-task learning for efficient structural damage detection

计算机科学 卷积神经网络 任务(项目管理) 人工智能 学习迁移 还原(数学) 模式识别(心理学) 深度学习 帧(网络) 计算 机器学习 算法 数学 电信 几何学 管理 经济
作者
Sadeq Kord,Touraj Taghikhany,Mohammad Akbari
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (4): 2270-2287 被引量:4
标识
DOI:10.1177/14759217231206178
摘要

In recent years, convolutional neural networks (CNNs) have demonstrated promising results in detecting structural damage. However, their architectures often overlook spatial and temporal effects simultaneously. This limitation can result in the loss of valuable information and an incapability to fully capture the complexity of the data, ultimately leading to reduced accuracy and suboptimal performance. This study proposes an intuitive three-dimensional CNN architecture that takes into account vibration history along with sensor spatial relations based on their relative positions. Furthermore, a multi-task learning (MTL) approach is suggested, which is a powerful approach for performing multiple tasks with a single network. The proposed 3D CNN method has been employed to detect single and double damage cases in an experimental steel frame through conventional classification alongside the transfer learning (TL). Moreover, MTL is used to detect single and double damage scenarios with a single unified network, which evaluates damage presence in separate tasks. The 3D CNN fulfilled state-of-the-art performance and 100% accuracy in detecting structural damage in almost all experiments. Additionally, the MTL model achieved promising results even in the presence of severe imbalanced classes of data. Furthermore, it was observed that the utilization of TL resulted in a notable reduction of computation time by 68% and the number of trainable parameters by 90% with the same level of accuracy in double-damage cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核桃应助liujj采纳,获得10
1秒前
1秒前
1秒前
在水一方应助益生菌采纳,获得10
1秒前
2秒前
飞天大野猪完成签到,获得积分10
2秒前
2秒前
星星发布了新的文献求助10
2秒前
3秒前
315947发布了新的文献求助10
4秒前
SciGPT应助baisefengche采纳,获得10
4秒前
YH完成签到,获得积分10
4秒前
dl完成签到,获得积分10
4秒前
Nick Green完成签到,获得积分10
4秒前
一顿吃不饱完成签到,获得积分0
5秒前
Einson完成签到 ,获得积分10
6秒前
iyy发布了新的文献求助10
6秒前
九回完成签到,获得积分10
6秒前
小刘有个大梦想完成签到 ,获得积分10
7秒前
7秒前
文艺的懿应助我行我素采纳,获得10
7秒前
chenny完成签到,获得积分10
7秒前
8秒前
lx840518发布了新的文献求助10
8秒前
闫富扬发布了新的文献求助10
8秒前
能用就行完成签到 ,获得积分10
8秒前
慕青应助sss采纳,获得10
8秒前
9秒前
阳光土豆完成签到,获得积分20
9秒前
orixero应助机智的然然采纳,获得30
10秒前
璇22发布了新的文献求助10
10秒前
来杯生椰拿铁完成签到,获得积分10
11秒前
闫先生完成签到,获得积分10
11秒前
11秒前
鱼子西完成签到,获得积分10
11秒前
baisefengche完成签到,获得积分20
11秒前
12秒前
寒冷书竹发布了新的文献求助10
13秒前
令人秃头发布了新的文献求助10
14秒前
iyy完成签到,获得积分20
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620