A novel spatiotemporal 3D CNN framework with multi-task learning for efficient structural damage detection

计算机科学 卷积神经网络 任务(项目管理) 人工智能 学习迁移 还原(数学) 模式识别(心理学) 深度学习 帧(网络) 计算 机器学习 算法 数学 电信 几何学 管理 经济
作者
Sadeq Kord,Touraj Taghikhany,Mohammad Akbari
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (4): 2270-2287 被引量:4
标识
DOI:10.1177/14759217231206178
摘要

In recent years, convolutional neural networks (CNNs) have demonstrated promising results in detecting structural damage. However, their architectures often overlook spatial and temporal effects simultaneously. This limitation can result in the loss of valuable information and an incapability to fully capture the complexity of the data, ultimately leading to reduced accuracy and suboptimal performance. This study proposes an intuitive three-dimensional CNN architecture that takes into account vibration history along with sensor spatial relations based on their relative positions. Furthermore, a multi-task learning (MTL) approach is suggested, which is a powerful approach for performing multiple tasks with a single network. The proposed 3D CNN method has been employed to detect single and double damage cases in an experimental steel frame through conventional classification alongside the transfer learning (TL). Moreover, MTL is used to detect single and double damage scenarios with a single unified network, which evaluates damage presence in separate tasks. The 3D CNN fulfilled state-of-the-art performance and 100% accuracy in detecting structural damage in almost all experiments. Additionally, the MTL model achieved promising results even in the presence of severe imbalanced classes of data. Furthermore, it was observed that the utilization of TL resulted in a notable reduction of computation time by 68% and the number of trainable parameters by 90% with the same level of accuracy in double-damage cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助小九采纳,获得10
3秒前
研友_ngX12Z发布了新的文献求助10
4秒前
5秒前
调皮寒凝完成签到,获得积分20
5秒前
6秒前
ardejiang发布了新的文献求助10
9秒前
9秒前
wannnng发布了新的文献求助10
9秒前
Lucas应助袁裘采纳,获得10
10秒前
顾矜应助丰富的乐儿采纳,获得10
12秒前
fhyhfhwer发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
愤怒的水壶完成签到,获得积分10
15秒前
19秒前
传奇3应助fhyhfhwer采纳,获得10
20秒前
小回发布了新的文献求助10
21秒前
NexusExplorer应助TomatoRin采纳,获得10
23秒前
25秒前
25秒前
CSUST科研一哥应助小回采纳,获得10
28秒前
橙汁发布了新的文献求助10
29秒前
xiaogang127发布了新的文献求助10
31秒前
sz发布了新的文献求助10
32秒前
vg完成签到 ,获得积分10
32秒前
36秒前
36秒前
exile完成签到,获得积分10
36秒前
36秒前
Rlawlight应助babe采纳,获得10
36秒前
万能图书馆应助babe采纳,获得10
36秒前
安静碧灵完成签到 ,获得积分10
38秒前
今后应助okko采纳,获得10
39秒前
yhq完成签到,获得积分20
40秒前
晨曦完成签到,获得积分10
40秒前
41秒前
苹果冷雁完成签到 ,获得积分10
42秒前
袁裘发布了新的文献求助10
43秒前
羊羊羊完成签到,获得积分10
43秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234201
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216151
捐赠科研通 2548179
什么是DOI,文献DOI怎么找? 1377602
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302