Identifying distinct plastics in hyperspectral experimental lab-, aircraft-, and satellite data using machine/deep learning methods trained with synthetically mixed spectral data

高光谱成像 背景(考古学) 人工智能 聚丙烯 支持向量机 计算机科学 聚苯乙烯 遥感 聚氯乙烯 聚对苯二甲酸乙二醇酯 材料科学 机器学习 环境科学 复合材料 地质学 聚合物 古生物学
作者
Shengjun Zhou,Hermann Kaufmann,Niklas Bohn,Mathias Bochow,Theres Kuester,Karl Segl
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:281: 113263-113263 被引量:14
标识
DOI:10.1016/j.rse.2022.113263
摘要

The growing production and use of plastics are becoming a serious progressive issue and people pay increasing attention to the effects of plastics on ecosystems and human health. The availability of hyperspectral data from space sensors inspired us to study the feasibility to detect and identify different types of plastics in aircraft -, Goafen-5 (GF-5) and PRISMA satellite data by means of deep -, and machine learning models trained with spectral signatures. In this context, various inhouse and public spectral libraries are used to create a comprehensive database with mixed pixels of different plastic and non-plastic materials. The endmembers of plastic types involved in this study are polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET) and polystyrene (PS), covering 95% of the global production. Additionally, some important varieties of industrial plastics types such as acrylonitrile butadiene styrene (ABS), ethylene vinyl acetate (EVA), polyamide (PA), polycarbonate (PC), and polymethyl methacrylate (PMMA) were included in the investigations. Different samples with varying optical properties (color, brightness, transmissivity) have been selected for each plastic type. As non-plastic materials we have chosen spectra of vegetation, rocks, soils and minerals contained in the public US libraries (ECOSTRESS and USGS). The number of spectra for the training of the deep learning and machine learning models was enlarged by a random linear mixing method and the resulting database was separated into a training and a test group for subsequent multi-label classification. Algorithms selected are a convolutional neural network (CNN), random forest (RF) and support vector machine (SVM). To investigate the transferability to any hyperspectral image data obtained by air-, and spacecraft sensors, we opted for a unification of the spectral response functions (SRF) and the spectral sampling intervals of all data. Validation is accomplished based on the test group of the spectral database, and tested by controlled laboratory and aircraft experiments recorded over surfaces with varying background materials. Results are further analyzed for the influence of different noise quantities and abundance levels. The performance of the three models is roughly balanced for the validation of the spectral data with an overall accuracy of 97%, 96%, and 95% for the CNN, RF, and SVM, models respectively. In the controlled lab experiments, various accuracy indicators, such as the recall rates and the comprehensive metrics F1-score, OA, and Kappa suggest the RF classifier as the most robust one, followed by the SVM and CNN models. As for the evaluation of the aircraft data from controlled experiments, the RF further outperforms the other two models, behaving most robustly and reliably against conditions with unknown plastics and unknown background surfaces. Thus, the RF was used to classify the ten types of plastics mentioned above in one GF-5 and two PRISMA satellite recordings of the same area. In comparison of both sensor systems, the RF produced high quality and transferable results for detecting plastic mainly related to greenhouses, sport fields, photovoltaic constructions and industrial sites that are discussed in detail in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵亮完成签到,获得积分20
1秒前
weiwei发布了新的文献求助10
1秒前
Lucas完成签到,获得积分10
3秒前
再夕予发布了新的文献求助10
3秒前
www发布了新的文献求助10
3秒前
orixero应助呼叫554采纳,获得10
3秒前
研友_VZG7GZ应助彭于晏采纳,获得50
4秒前
赵亮发布了新的文献求助20
5秒前
10秒前
科研通AI5应助zhuxd采纳,获得10
12秒前
13秒前
科研通AI5应助koitoyu采纳,获得10
14秒前
慕青应助eden采纳,获得10
15秒前
weiwei完成签到,获得积分10
15秒前
LHE完成签到,获得积分10
15秒前
CipherSage应助娜娜采纳,获得10
15秒前
科研通AI5应助小鑫采纳,获得30
15秒前
小科发布了新的文献求助10
16秒前
彭于晏发布了新的文献求助50
16秒前
星河清梦完成签到,获得积分10
16秒前
刻苦亦绿完成签到 ,获得积分10
18秒前
小菡菡发布了新的文献求助10
20秒前
22秒前
24秒前
务实的夏菡完成签到 ,获得积分10
24秒前
27秒前
27秒前
领导范儿应助www采纳,获得10
27秒前
27秒前
呼叫554发布了新的文献求助10
29秒前
30秒前
30秒前
万能图书馆应助星空采纳,获得10
31秒前
31秒前
LLL完成签到,获得积分10
32秒前
32秒前
科研通AI2S应助辛勤钧采纳,获得10
32秒前
33秒前
33秒前
Bennyz发布了新的文献求助10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3676430
求助须知:如何正确求助?哪些是违规求助? 3230724
关于积分的说明 9792047
捐赠科研通 2941831
什么是DOI,文献DOI怎么找? 1612832
邀请新用户注册赠送积分活动 761306
科研通“疑难数据库(出版商)”最低求助积分说明 736776