A feature extraction procedure based on trigonometric functions and cumulative descriptors to enhance prognostics modeling

预言 计算机科学 特征(语言学) 特征提取 原始数据 单调函数 统计的 模式识别(心理学) 数据挖掘 人工智能 小波 时间序列 机器学习 数学 统计 语言学 数学分析 哲学 程序设计语言
作者
Kamran Javed,Rafael Gouriveau,Noureddine Zerhouni,Patrick Nectoux
标识
DOI:10.1109/icphm.2013.6621413
摘要

Performances of data-driven approaches are closely related to the form and trend of extracted features (that can be seen as time series health indicators). (1) Even if much of data-driven approaches are suitable to catch non-linearity in signals, features with monotonic trends (which is not always the case!) are likely to lead to better estimates. (2) Also, some classical extracted features do not show variation until a few time before failure occurs, which prevents performing RUL predictions in a timely manner to plan maintenance task. The aim of this paper is to present a novel feature extraction procedure to face with these two problems. Two aspects are considered. Firstly, the paper focuses on feature extraction in a new manner by utilizing trigonometric functions to extract features (health indicators) rather than typical statistic measures like RMS, etc. The proposed approach is applied on time-frequency analysis with Discrete Wavelet Transform (DWT). Secondly, a simple way of building new features based on cumulative functions is also proposed in order to transform time series into descriptors that depict accumulated wear. This approach can be extended to other types of features. The main idea of both developments is to map raw data with monotonic features with early trends, i.e., with descriptors that can be easily predicted. This methodology can enhance prognostics modeling and RUL prediction. The whole proposition is illustrated and discussed thanks to tests performed on vibration datasets from PRONOSTIA, an experimental platform that enables accelerated degradation of bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjw发布了新的文献求助10
3秒前
含糊的尔槐完成签到,获得积分10
3秒前
Ava应助名天采纳,获得10
3秒前
6秒前
7秒前
cxwcn完成签到 ,获得积分10
9秒前
12秒前
12秒前
轩风发布了新的文献求助10
12秒前
快乐的风发布了新的文献求助10
13秒前
画清风完成签到,获得积分10
13秒前
13秒前
bnjay发布了新的文献求助50
14秒前
酷波er应助LANER采纳,获得10
14秒前
冷傲的xu完成签到,获得积分10
16秒前
17秒前
18秒前
Ava应助zzm采纳,获得10
19秒前
20秒前
zbw完成签到 ,获得积分20
20秒前
Lyla完成签到,获得积分10
20秒前
拼搏的败完成签到 ,获得积分10
21秒前
chf102完成签到,获得积分10
22秒前
快乐的风完成签到,获得积分20
23秒前
单薄的西装应助Abdory采纳,获得10
23秒前
23秒前
24秒前
24秒前
Lyla发布了新的文献求助10
24秒前
充电宝应助常乐的大宝剑采纳,获得10
25秒前
冷傲的夜香发布了新的文献求助200
25秒前
耘耔发布了新的文献求助30
25秒前
Babara完成签到,获得积分20
25秒前
搬砖的冰美式完成签到,获得积分10
26秒前
科研通AI2S应助婌旎采纳,获得10
26秒前
摩尔曼斯克港完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
传奇3应助pan采纳,获得10
27秒前
vv123456ha完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500590
关于积分的说明 11100070
捐赠科研通 3231090
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719