A feature extraction procedure based on trigonometric functions and cumulative descriptors to enhance prognostics modeling

预言 计算机科学 特征(语言学) 特征提取 原始数据 单调函数 统计的 模式识别(心理学) 数据挖掘 人工智能 小波 时间序列 机器学习 数学 统计 程序设计语言 数学分析 语言学 哲学
作者
Kamran Javed,Rafael Gouriveau,Noureddine Zerhouni,Patrick Nectoux
标识
DOI:10.1109/icphm.2013.6621413
摘要

Performances of data-driven approaches are closely related to the form and trend of extracted features (that can be seen as time series health indicators). (1) Even if much of data-driven approaches are suitable to catch non-linearity in signals, features with monotonic trends (which is not always the case!) are likely to lead to better estimates. (2) Also, some classical extracted features do not show variation until a few time before failure occurs, which prevents performing RUL predictions in a timely manner to plan maintenance task. The aim of this paper is to present a novel feature extraction procedure to face with these two problems. Two aspects are considered. Firstly, the paper focuses on feature extraction in a new manner by utilizing trigonometric functions to extract features (health indicators) rather than typical statistic measures like RMS, etc. The proposed approach is applied on time-frequency analysis with Discrete Wavelet Transform (DWT). Secondly, a simple way of building new features based on cumulative functions is also proposed in order to transform time series into descriptors that depict accumulated wear. This approach can be extended to other types of features. The main idea of both developments is to map raw data with monotonic features with early trends, i.e., with descriptors that can be easily predicted. This methodology can enhance prognostics modeling and RUL prediction. The whole proposition is illustrated and discussed thanks to tests performed on vibration datasets from PRONOSTIA, an experimental platform that enables accelerated degradation of bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靓丽安珊完成签到 ,获得积分10
刚刚
edward完成签到,获得积分10
2秒前
Orange应助拾意采纳,获得10
2秒前
icreat完成签到,获得积分10
2秒前
妮妮发布了新的文献求助10
4秒前
闪闪白亦完成签到 ,获得积分10
4秒前
Iridesent0v0发布了新的文献求助10
4秒前
渠安发布了新的文献求助30
6秒前
科研通AI2S应助木习习采纳,获得10
6秒前
闪闪白亦关注了科研通微信公众号
8秒前
8秒前
8秒前
Iridesent0v0完成签到,获得积分10
10秒前
gogogo完成签到,获得积分10
11秒前
11秒前
活力的尔阳完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
13秒前
木习习完成签到,获得积分10
13秒前
bkagyin应助亦玉采纳,获得10
13秒前
13秒前
13秒前
爱吃肉肉的手性分子完成签到,获得积分10
14秒前
15秒前
拾意发布了新的文献求助10
16秒前
岁岁完成签到 ,获得积分10
17秒前
belly发布了新的文献求助10
17秒前
木习习发布了新的文献求助10
18秒前
18秒前
18秒前
Su发布了新的文献求助10
18秒前
可靠板栗完成签到,获得积分10
19秒前
kjc完成签到 ,获得积分10
19秒前
20秒前
地球为何自转完成签到,获得积分10
22秒前
搜集达人应助坚强的严青采纳,获得10
22秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474