亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A feature extraction procedure based on trigonometric functions and cumulative descriptors to enhance prognostics modeling

预言 计算机科学 特征(语言学) 特征提取 原始数据 单调函数 统计的 模式识别(心理学) 数据挖掘 人工智能 小波 时间序列 机器学习 数学 统计 语言学 数学分析 哲学 程序设计语言
作者
Kamran Javed,Rafael Gouriveau,Noureddine Zerhouni,Patrick Nectoux
标识
DOI:10.1109/icphm.2013.6621413
摘要

Performances of data-driven approaches are closely related to the form and trend of extracted features (that can be seen as time series health indicators). (1) Even if much of data-driven approaches are suitable to catch non-linearity in signals, features with monotonic trends (which is not always the case!) are likely to lead to better estimates. (2) Also, some classical extracted features do not show variation until a few time before failure occurs, which prevents performing RUL predictions in a timely manner to plan maintenance task. The aim of this paper is to present a novel feature extraction procedure to face with these two problems. Two aspects are considered. Firstly, the paper focuses on feature extraction in a new manner by utilizing trigonometric functions to extract features (health indicators) rather than typical statistic measures like RMS, etc. The proposed approach is applied on time-frequency analysis with Discrete Wavelet Transform (DWT). Secondly, a simple way of building new features based on cumulative functions is also proposed in order to transform time series into descriptors that depict accumulated wear. This approach can be extended to other types of features. The main idea of both developments is to map raw data with monotonic features with early trends, i.e., with descriptors that can be easily predicted. This methodology can enhance prognostics modeling and RUL prediction. The whole proposition is illustrated and discussed thanks to tests performed on vibration datasets from PRONOSTIA, an experimental platform that enables accelerated degradation of bearings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC完成签到 ,获得积分10
刚刚
专注的问寒应助Kevin采纳,获得50
5秒前
11秒前
Lucas应助等待雁桃采纳,获得30
13秒前
风华正茂完成签到 ,获得积分10
18秒前
哈哈哈哈嗝屁完成签到,获得积分20
21秒前
22秒前
清浅发布了新的文献求助10
26秒前
28秒前
橙汁发布了新的文献求助10
31秒前
31秒前
无花果应助橙汁采纳,获得10
34秒前
37秒前
38秒前
41秒前
shaylie完成签到 ,获得积分10
43秒前
CR7应助搞怪的砖家采纳,获得20
46秒前
欢欢发布了新的文献求助10
48秒前
50秒前
细心从阳完成签到,获得积分10
53秒前
59秒前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
1分钟前
天才玩家H完成签到,获得积分10
1分钟前
1分钟前
XP完成签到 ,获得积分10
1分钟前
1分钟前
龙06驳回了泷生应助
1分钟前
林一发布了新的文献求助20
1分钟前
科研通AI2S应助Ww采纳,获得10
1分钟前
背后晓兰完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
赘婿应助PPD采纳,获得10
2分钟前
清浅发布了新的文献求助30
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664111
求助须知:如何正确求助?哪些是违规求助? 4857755
关于积分的说明 15107180
捐赠科研通 4822567
什么是DOI,文献DOI怎么找? 2581565
邀请新用户注册赠送积分活动 1535750
关于科研通互助平台的介绍 1493984