Filtering and Segmentation of Polarimetric SAR Data Based on Binary Partition Trees

模式识别(心理学) 计算机科学 人工智能 协方差 合成孔径雷达 斑点图案 分割 滤波器(信号处理) 数学 计算机视觉 统计
作者
Alberto Alonso-González,Carlos López-Martínez,Philippe Salembier
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:50 (2): 593-605 被引量:92
标识
DOI:10.1109/tgrs.2011.2160647
摘要

In this paper,we propose the use of binary partition trees (BPT) to introduce a novel region-based and multi-scale polarimetric SAR (PolSAR) data representation. The BPT structure represents homogeneous regions in the data at different detail levels. The construction process of the BPT is based, firstly, on a region model able to represent the homogeneous areas, and, secondly, on a dissimilarity measure in order to identify similar areas and define the merging sequence. Depending on the final application, a BPT pruning strategy needs to be introduced. In this paper, we focus on the application of BPT PolSAR data representation for speckle noise filtering and data segmentation on the basis of the Gaussian hypothesis, where the average covariance or coherency matrices are considered as a region model. We introduce and quantitatively analyze different dissimilarity measures. In this case, and with the objective to be sensitive to the complete polarimetric information under the Gaussian hypothesis, dissimilarity measures considering the complete covariance or coherency matrices are employed. When confronted to PolSAR speckle filtering, two pruning strategies are detailed and evaluated. As presented, the BPT PolSAR speckle filter defined filters data according to the complete polarimetric information. As shown, this novel filtering approach is able to achieve very strong filtering while preserving the spatial resolution and the polarimetric information. Finally, the BPT representation structure is employed for high spatial resolution image segmentation applied to coastline detection. The analyses detailed in this work are based on simulated, as well as on real PolSAR data acquired by the ESAR system of DLR and the RADARSAT-2 system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小孙发布了新的文献求助10
1秒前
1秒前
摇摇七喜发布了新的文献求助30
2秒前
前世的尘完成签到,获得积分10
2秒前
芝麻糊应助吃吃菜菜吧采纳,获得10
3秒前
5秒前
Akun发布了新的文献求助10
5秒前
许起眸完成签到,获得积分10
7秒前
求知的周发布了新的文献求助30
9秒前
michaeleh发布了新的文献求助10
9秒前
10秒前
xiaohong完成签到 ,获得积分10
11秒前
15秒前
ccrr发布了新的文献求助10
15秒前
小孙发布了新的文献求助10
16秒前
16秒前
sss发布了新的文献求助10
16秒前
Zn关闭了Zn文献求助
16秒前
静影沉璧发布了新的文献求助30
16秒前
顾矜应助Finian采纳,获得10
17秒前
17秒前
sdb发布了新的文献求助10
19秒前
奋斗忆灵完成签到,获得积分10
19秒前
22秒前
不羁的冰草完成签到,获得积分10
22秒前
23秒前
Mrivy应助剪云者采纳,获得10
23秒前
26秒前
28秒前
wawuuuuu应助司马千风采纳,获得10
29秒前
麻辣烫完成签到 ,获得积分10
30秒前
Ava应助tao采纳,获得10
30秒前
31秒前
31秒前
32秒前
小草发布了新的文献求助10
33秒前
慕青应助球形的荒野采纳,获得10
33秒前
34秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462603
求助须知:如何正确求助?哪些是违规求助? 3056160
关于积分的说明 9050826
捐赠科研通 2745793
什么是DOI,文献DOI怎么找? 1506578
科研通“疑难数据库(出版商)”最低求助积分说明 696165
邀请新用户注册赠送积分活动 695677