Personalized prediction of first-cycle in vitro fertilization success

预测能力 活产 医学 统计 数学 生物 遗传学 认识论 哲学 怀孕
作者
ByoungSeon Choi,Ernesto Bosch,B.M. Lannon,Marie-Claude Léveillé,Wing H. Wong,Arthur Leader,António Pellicer,Alan S. Penzias,Mylene Yao
出处
期刊:Fertility and Sterility [Elsevier]
卷期号:99 (7): 1905-1911 被引量:41
标识
DOI:10.1016/j.fertnstert.2013.02.016
摘要

ObjectiveTo test whether the probability of having a live birth (LB) with the first IVF cycle (C1) can be predicted and personalized for patients in diverse environments.DesignRetrospective validation of multicenter prediction model.SettingThree university-affiliated outpatient IVF clinics located in different countries.Patient(s)Using primary models aggregated from >13,000 C1s, we applied the boosted tree method to train a preIVF-diversity model (PreIVF-D) with 1,061 C1s from 2008 to 2009, and validated predicted LB probabilities with an independent dataset comprising 1,058 C1s from 2008 to 2009.Intervention(s)None.Main Outcome Measure(s)Predictive power, reclassification, receiver operator characteristic analysis, calibration, dynamic range.Result(s)Overall, with PreIVF-D, 86% of cases had significantly different LB probabilities compared with age control, and more than one-half had higher LB probabilities. Specifically, 42% of patients could have been identified by PreIVF-D to have a personalized predicted success rate >45%, whereas an age-control model could not differentiate them from others. Furthermore, PreIVF-D showed improved predictive power, with 36% improved log-likelihood (or 9.0-fold by log-scale; >1,000-fold linear scale), and prediction errors for subgroups ranged from 0.9% to 3.7%.Conclusion(s)Validated prediction of personalized LB probabilities from diverse multiple sources identify excellent prognoses in more than one-half of patients. To test whether the probability of having a live birth (LB) with the first IVF cycle (C1) can be predicted and personalized for patients in diverse environments. Retrospective validation of multicenter prediction model. Three university-affiliated outpatient IVF clinics located in different countries. Using primary models aggregated from >13,000 C1s, we applied the boosted tree method to train a preIVF-diversity model (PreIVF-D) with 1,061 C1s from 2008 to 2009, and validated predicted LB probabilities with an independent dataset comprising 1,058 C1s from 2008 to 2009. None. Predictive power, reclassification, receiver operator characteristic analysis, calibration, dynamic range. Overall, with PreIVF-D, 86% of cases had significantly different LB probabilities compared with age control, and more than one-half had higher LB probabilities. Specifically, 42% of patients could have been identified by PreIVF-D to have a personalized predicted success rate >45%, whereas an age-control model could not differentiate them from others. Furthermore, PreIVF-D showed improved predictive power, with 36% improved log-likelihood (or 9.0-fold by log-scale; >1,000-fold linear scale), and prediction errors for subgroups ranged from 0.9% to 3.7%. Validated prediction of personalized LB probabilities from diverse multiple sources identify excellent prognoses in more than one-half of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缺了一口的巧克力蛋挞完成签到 ,获得积分10
刚刚
灯灯灯灯完成签到,获得积分10
1秒前
1秒前
1秒前
蓝蚁发布了新的文献求助10
2秒前
苏打苏打完成签到,获得积分10
2秒前
张小哥12发布了新的文献求助10
2秒前
3秒前
良辰完成签到,获得积分0
3秒前
ant完成签到,获得积分10
3秒前
3秒前
姜小七完成签到,获得积分10
4秒前
4秒前
4秒前
hhh完成签到,获得积分10
4秒前
4秒前
杨成完成签到,获得积分20
4秒前
万万完成签到,获得积分10
4秒前
科研通AI2S应助稳重绿蕊采纳,获得10
6秒前
yu完成签到,获得积分10
6秒前
呆呆不呆Zz完成签到,获得积分10
6秒前
田様应助erhgbw采纳,获得10
7秒前
Owen应助asd采纳,获得10
7秒前
emmm发布了新的文献求助10
8秒前
大福完成签到,获得积分10
8秒前
8秒前
mml发布了新的文献求助10
9秒前
小鱼完成签到,获得积分10
9秒前
9秒前
kid1912应助东哥采纳,获得10
9秒前
9秒前
天马行空发布了新的文献求助10
10秒前
黑葫芦完成签到,获得积分10
10秒前
姜汁树完成签到 ,获得积分10
10秒前
852应助呜啦啦采纳,获得10
10秒前
10秒前
张小哥12完成签到,获得积分10
10秒前
顾矜应助Distance采纳,获得10
11秒前
xxl完成签到,获得积分10
11秒前
CipherSage应助樱_花qxy采纳,获得10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3456199
求助须知:如何正确求助?哪些是违规求助? 3051503
关于积分的说明 9026134
捐赠科研通 2740056
什么是DOI,文献DOI怎么找? 1503118
科研通“疑难数据库(出版商)”最低求助积分说明 694680
邀请新用户注册赠送积分活动 693565