亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research

人工神经网络 激活函数 人工智能 计算机科学 参数化复杂度 传递函数 学习迁移 功能(生物学) 物理神经网络 学习规律 神经系统网络模型 时滞神经网络 机器学习 人工神经网络的类型 算法 工程类 进化生物学 电气工程 生物
作者
Snežana Agatonović-Kuštrin,Rosemary Beresford
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:22 (5): 717-727 被引量:1626
标识
DOI:10.1016/s0731-7085(99)00272-1
摘要

Artificial neural networks (ANNs) are biologically inspired computer programs designed to simulate the way in which the human brain processes information. ANNs gather their knowledge by detecting the patterns and relationships in data and learn (or are trained) through experience, not from programming. An ANN is formed from hundreds of single units, artificial neurons or processing elements (PE), connected with coefficients (weights), which constitute the neural structure and are organised in layers. The power of neural computations comes from connecting neurons in a network. Each PE has weighted inputs, transfer function and one output. The behavior of a neural network is determined by the transfer functions of its neurons, by the learning rule, and by the architecture itself. The weights are the adjustable parameters and, in that sense, a neural network is a parameterized system. The weighed sum of the inputs constitutes the activation of the neuron. The activation signal is passed through transfer function to produce a single output of the neuron. Transfer function introduces non-linearity to the network. During training, the inter-unit connections are optimized until the error in predictions is minimized and the network reaches the specified level of accuracy. Once the network is trained and tested it can be given new input information to predict the output. Many types of neural networks have been designed already and new ones are invented every week but all can be described by the transfer functions of their neurons, by the learning rule, and by the connection formula. ANN represents a promising modeling technique, especially for data sets having non-linear relationships which are frequently encountered in pharmaceutical processes. In terms of model specification, artificial neural networks require no knowledge of the data source but, since they often contain many weights that must be estimated, they require large training sets. In addition, ANNs can combine and incorporate both literature-based and experimental data to solve problems. The various applications of ANNs can be summarised into classification or pattern recognition, prediction and modeling. Supervised 'associating networks can be applied in pharmaceutical fields as an alternative to conventional response surface methodology. Unsupervised feature-extracting networks represent an alternative to principal component analysis. Non-adaptive unsupervised networks are able to reconstruct their patterns when presented with noisy samples and can be used for image recognition. The potential applications of ANN methodology in the pharmaceutical sciences range from interpretation of analytical data, drug and dosage form design through biopharmacy to clinical pharmacy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助大熊采纳,获得10
7秒前
科研通AI6应助大熊采纳,获得10
21秒前
赘婿应助落后博采纳,获得10
22秒前
雨竹完成签到,获得积分10
22秒前
isak发布了新的文献求助10
32秒前
38秒前
40秒前
isak完成签到,获得积分10
42秒前
42秒前
大熊发布了新的文献求助10
46秒前
1分钟前
1分钟前
ZZZ发布了新的文献求助10
1分钟前
大熊发布了新的文献求助10
1分钟前
大熊完成签到 ,获得积分10
1分钟前
1分钟前
lilin完成签到 ,获得积分20
1分钟前
2分钟前
2分钟前
ZZZ完成签到,获得积分10
2分钟前
momo发布了新的文献求助10
2分钟前
Timelapse应助诚心山灵采纳,获得10
3分钟前
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
灵巧的代芙完成签到 ,获得积分10
3分钟前
科目三应助顺利的边牧采纳,获得10
3分钟前
紫苏发布了新的文献求助10
3分钟前
4分钟前
4分钟前
notfound发布了新的文献求助10
4分钟前
4分钟前
5分钟前
甜甜纸飞机完成签到 ,获得积分10
5分钟前
Eileen完成签到 ,获得积分0
5分钟前
甜甜的紫菜完成签到 ,获得积分10
5分钟前
5分钟前
xiaozou55完成签到 ,获得积分10
6分钟前
6分钟前
ajing完成签到,获得积分10
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564965
求助须知:如何正确求助?哪些是违规求助? 4649714
关于积分的说明 14689286
捐赠科研通 4591604
什么是DOI,文献DOI怎么找? 2519322
邀请新用户注册赠送积分活动 1491903
关于科研通互助平台的介绍 1462973