Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research

人工神经网络 激活函数 人工智能 计算机科学 参数化复杂度 传递函数 学习迁移 功能(生物学) 物理神经网络 学习规律 神经系统网络模型 时滞神经网络 机器学习 人工神经网络的类型 算法 工程类 电气工程 生物 进化生物学
作者
Snežana Agatonović-Kuštrin,Rosemary Beresford
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier BV]
卷期号:22 (5): 717-727 被引量:1626
标识
DOI:10.1016/s0731-7085(99)00272-1
摘要

Artificial neural networks (ANNs) are biologically inspired computer programs designed to simulate the way in which the human brain processes information. ANNs gather their knowledge by detecting the patterns and relationships in data and learn (or are trained) through experience, not from programming. An ANN is formed from hundreds of single units, artificial neurons or processing elements (PE), connected with coefficients (weights), which constitute the neural structure and are organised in layers. The power of neural computations comes from connecting neurons in a network. Each PE has weighted inputs, transfer function and one output. The behavior of a neural network is determined by the transfer functions of its neurons, by the learning rule, and by the architecture itself. The weights are the adjustable parameters and, in that sense, a neural network is a parameterized system. The weighed sum of the inputs constitutes the activation of the neuron. The activation signal is passed through transfer function to produce a single output of the neuron. Transfer function introduces non-linearity to the network. During training, the inter-unit connections are optimized until the error in predictions is minimized and the network reaches the specified level of accuracy. Once the network is trained and tested it can be given new input information to predict the output. Many types of neural networks have been designed already and new ones are invented every week but all can be described by the transfer functions of their neurons, by the learning rule, and by the connection formula. ANN represents a promising modeling technique, especially for data sets having non-linear relationships which are frequently encountered in pharmaceutical processes. In terms of model specification, artificial neural networks require no knowledge of the data source but, since they often contain many weights that must be estimated, they require large training sets. In addition, ANNs can combine and incorporate both literature-based and experimental data to solve problems. The various applications of ANNs can be summarised into classification or pattern recognition, prediction and modeling. Supervised 'associating networks can be applied in pharmaceutical fields as an alternative to conventional response surface methodology. Unsupervised feature-extracting networks represent an alternative to principal component analysis. Non-adaptive unsupervised networks are able to reconstruct their patterns when presented with noisy samples and can be used for image recognition. The potential applications of ANN methodology in the pharmaceutical sciences range from interpretation of analytical data, drug and dosage form design through biopharmacy to clinical pharmacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果果发布了新的文献求助10
刚刚
权翼发布了新的文献求助10
刚刚
小郭应助tecumseh采纳,获得10
刚刚
一一发布了新的文献求助10
2秒前
王九八发布了新的文献求助10
2秒前
peanut发布了新的文献求助10
3秒前
ATOM完成签到,获得积分20
3秒前
3秒前
orixero应助陈冲采纳,获得10
3秒前
白羊发布了新的文献求助10
4秒前
4秒前
叫我一只球应助感冒了采纳,获得10
4秒前
哒哒哒完成签到 ,获得积分10
4秒前
传奇3应助瓜瓜瓜采纳,获得10
5秒前
5秒前
5秒前
黄婷发布了新的文献求助10
6秒前
6秒前
Ava应助泡泡糖与一世安采纳,获得30
7秒前
7秒前
zzk完成签到,获得积分10
7秒前
李健的小迷弟应助果果采纳,获得10
7秒前
Veronica Mew完成签到 ,获得积分10
8秒前
周百成完成签到,获得积分10
8秒前
beyond完成签到,获得积分10
8秒前
8秒前
科目三应助txy采纳,获得10
9秒前
erluzh完成签到,获得积分10
9秒前
晶晶baobao发布了新的文献求助20
11秒前
顾矜应助大气海露采纳,获得10
12秒前
Feng发布了新的文献求助20
13秒前
格鲁特发布了新的文献求助10
13秒前
桐桐应助leichun采纳,获得10
14秒前
如意静白发布了新的文献求助10
14秒前
14秒前
JIANYOUFU发布了新的文献求助10
14秒前
14秒前
15秒前
大波斯菊完成签到,获得积分10
15秒前
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352