Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research

人工神经网络 激活函数 人工智能 计算机科学 参数化复杂度 传递函数 学习迁移 功能(生物学) 物理神经网络 学习规律 神经系统网络模型 时滞神经网络 机器学习 人工神经网络的类型 算法 工程类 进化生物学 电气工程 生物
作者
Snežana Agatonović-Kuštrin,Rosemary Beresford
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:22 (5): 717-727 被引量:1526
标识
DOI:10.1016/s0731-7085(99)00272-1
摘要

Artificial neural networks (ANNs) are biologically inspired computer programs designed to simulate the way in which the human brain processes information. ANNs gather their knowledge by detecting the patterns and relationships in data and learn (or are trained) through experience, not from programming. An ANN is formed from hundreds of single units, artificial neurons or processing elements (PE), connected with coefficients (weights), which constitute the neural structure and are organised in layers. The power of neural computations comes from connecting neurons in a network. Each PE has weighted inputs, transfer function and one output. The behavior of a neural network is determined by the transfer functions of its neurons, by the learning rule, and by the architecture itself. The weights are the adjustable parameters and, in that sense, a neural network is a parameterized system. The weighed sum of the inputs constitutes the activation of the neuron. The activation signal is passed through transfer function to produce a single output of the neuron. Transfer function introduces non-linearity to the network. During training, the inter-unit connections are optimized until the error in predictions is minimized and the network reaches the specified level of accuracy. Once the network is trained and tested it can be given new input information to predict the output. Many types of neural networks have been designed already and new ones are invented every week but all can be described by the transfer functions of their neurons, by the learning rule, and by the connection formula. ANN represents a promising modeling technique, especially for data sets having non-linear relationships which are frequently encountered in pharmaceutical processes. In terms of model specification, artificial neural networks require no knowledge of the data source but, since they often contain many weights that must be estimated, they require large training sets. In addition, ANNs can combine and incorporate both literature-based and experimental data to solve problems. The various applications of ANNs can be summarised into classification or pattern recognition, prediction and modeling. Supervised 'associating networks can be applied in pharmaceutical fields as an alternative to conventional response surface methodology. Unsupervised feature-extracting networks represent an alternative to principal component analysis. Non-adaptive unsupervised networks are able to reconstruct their patterns when presented with noisy samples and can be used for image recognition. The potential applications of ANN methodology in the pharmaceutical sciences range from interpretation of analytical data, drug and dosage form design through biopharmacy to clinical pharmacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑的语芙完成签到 ,获得积分10
刚刚
2秒前
2秒前
mylaodao完成签到,获得积分0
2秒前
ark861023发布了新的文献求助10
3秒前
Teddyboy完成签到,获得积分10
5秒前
6秒前
荣耀完成签到,获得积分10
7秒前
希望天下0贩的0应助amupf采纳,获得10
7秒前
7秒前
韩soso发布了新的文献求助10
10秒前
半夏完成签到,获得积分10
11秒前
威武雅阳完成签到,获得积分20
11秒前
丿小智灬完成签到,获得积分10
11秒前
12秒前
13秒前
科研通AI2S应助闪闪小白菜采纳,获得10
14秒前
善学以致用应助meme采纳,获得10
15秒前
走走应助ark861023采纳,获得10
15秒前
17秒前
qqqq完成签到,获得积分10
17秒前
17秒前
qqqq发布了新的文献求助10
19秒前
Ava应助sln采纳,获得10
19秒前
zzz完成签到 ,获得积分10
19秒前
万能图书馆应助ziyue采纳,获得10
19秒前
shtatbf应助嘉心糖采纳,获得200
20秒前
CipherSage应助单薄夜安采纳,获得10
20秒前
涂涂发布了新的文献求助10
20秒前
spencerleo发布了新的文献求助10
20秒前
21秒前
21秒前
59完成签到 ,获得积分10
22秒前
24秒前
NexusExplorer应助spencerleo采纳,获得10
25秒前
占博涛发布了新的文献求助10
26秒前
26秒前
wltwb完成签到,获得积分10
27秒前
27秒前
林木木发布了新的文献求助10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304467
求助须知:如何正确求助?哪些是违规求助? 2938424
关于积分的说明 8488700
捐赠科研通 2612892
什么是DOI,文献DOI怎么找? 1426994
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647378