Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research

人工神经网络 激活函数 人工智能 计算机科学 参数化复杂度 传递函数 学习迁移 功能(生物学) 物理神经网络 学习规律 神经系统网络模型 时滞神经网络 机器学习 人工神经网络的类型 算法 工程类 进化生物学 电气工程 生物
作者
Snežana Agatonović-Kuštrin,Rosemary Beresford
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier BV]
卷期号:22 (5): 717-727 被引量:1626
标识
DOI:10.1016/s0731-7085(99)00272-1
摘要

Artificial neural networks (ANNs) are biologically inspired computer programs designed to simulate the way in which the human brain processes information. ANNs gather their knowledge by detecting the patterns and relationships in data and learn (or are trained) through experience, not from programming. An ANN is formed from hundreds of single units, artificial neurons or processing elements (PE), connected with coefficients (weights), which constitute the neural structure and are organised in layers. The power of neural computations comes from connecting neurons in a network. Each PE has weighted inputs, transfer function and one output. The behavior of a neural network is determined by the transfer functions of its neurons, by the learning rule, and by the architecture itself. The weights are the adjustable parameters and, in that sense, a neural network is a parameterized system. The weighed sum of the inputs constitutes the activation of the neuron. The activation signal is passed through transfer function to produce a single output of the neuron. Transfer function introduces non-linearity to the network. During training, the inter-unit connections are optimized until the error in predictions is minimized and the network reaches the specified level of accuracy. Once the network is trained and tested it can be given new input information to predict the output. Many types of neural networks have been designed already and new ones are invented every week but all can be described by the transfer functions of their neurons, by the learning rule, and by the connection formula. ANN represents a promising modeling technique, especially for data sets having non-linear relationships which are frequently encountered in pharmaceutical processes. In terms of model specification, artificial neural networks require no knowledge of the data source but, since they often contain many weights that must be estimated, they require large training sets. In addition, ANNs can combine and incorporate both literature-based and experimental data to solve problems. The various applications of ANNs can be summarised into classification or pattern recognition, prediction and modeling. Supervised 'associating networks can be applied in pharmaceutical fields as an alternative to conventional response surface methodology. Unsupervised feature-extracting networks represent an alternative to principal component analysis. Non-adaptive unsupervised networks are able to reconstruct their patterns when presented with noisy samples and can be used for image recognition. The potential applications of ANN methodology in the pharmaceutical sciences range from interpretation of analytical data, drug and dosage form design through biopharmacy to clinical pharmacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小怪酋长完成签到,获得积分10
1秒前
Yuki完成签到 ,获得积分10
1秒前
rr完成签到,获得积分20
2秒前
2秒前
ZY完成签到 ,获得积分10
3秒前
Grey完成签到 ,获得积分10
3秒前
candy9527发布了新的文献求助10
3秒前
763完成签到 ,获得积分10
4秒前
Pioneer完成签到 ,获得积分10
4秒前
缓慢修杰完成签到,获得积分10
4秒前
4秒前
suwan完成签到,获得积分10
5秒前
Miya_han完成签到,获得积分10
5秒前
Lisa完成签到 ,获得积分10
5秒前
无心的枫完成签到,获得积分10
5秒前
hellosci666完成签到,获得积分10
5秒前
研友_8WzJOZ完成签到,获得积分10
6秒前
粉色小妖精完成签到,获得积分10
7秒前
义气飞机完成签到,获得积分10
7秒前
小朱朱发布了新的文献求助10
8秒前
Hedy完成签到,获得积分10
9秒前
zjsy完成签到,获得积分20
9秒前
量子星尘发布了新的文献求助10
9秒前
lzq发布了新的文献求助10
9秒前
良辰完成签到,获得积分10
11秒前
11秒前
12321完成签到,获得积分10
11秒前
骑猪看月完成签到,获得积分10
12秒前
小蜗牛完成签到,获得积分10
12秒前
rr关注了科研通微信公众号
12秒前
12秒前
顾羽完成签到,获得积分10
12秒前
整齐醉冬完成签到,获得积分10
13秒前
乐乐应助德鲁大叔采纳,获得10
13秒前
木可完成签到,获得积分10
14秒前
14秒前
彬墩墩完成签到,获得积分10
15秒前
15秒前
Kai完成签到 ,获得积分10
15秒前
Jasperlee完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597902
求助须知:如何正确求助?哪些是违规求助? 4009316
关于积分的说明 12410427
捐赠科研通 3688598
什么是DOI,文献DOI怎么找? 2033325
邀请新用户注册赠送积分活动 1066591
科研通“疑难数据库(出版商)”最低求助积分说明 951742