Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research

人工神经网络 激活函数 人工智能 计算机科学 参数化复杂度 传递函数 学习迁移 功能(生物学) 物理神经网络 学习规律 神经系统网络模型 时滞神经网络 机器学习 人工神经网络的类型 算法 工程类 进化生物学 电气工程 生物
作者
Snežana Agatonović-Kuštrin,Rosemary Beresford
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier BV]
卷期号:22 (5): 717-727 被引量:1626
标识
DOI:10.1016/s0731-7085(99)00272-1
摘要

Artificial neural networks (ANNs) are biologically inspired computer programs designed to simulate the way in which the human brain processes information. ANNs gather their knowledge by detecting the patterns and relationships in data and learn (or are trained) through experience, not from programming. An ANN is formed from hundreds of single units, artificial neurons or processing elements (PE), connected with coefficients (weights), which constitute the neural structure and are organised in layers. The power of neural computations comes from connecting neurons in a network. Each PE has weighted inputs, transfer function and one output. The behavior of a neural network is determined by the transfer functions of its neurons, by the learning rule, and by the architecture itself. The weights are the adjustable parameters and, in that sense, a neural network is a parameterized system. The weighed sum of the inputs constitutes the activation of the neuron. The activation signal is passed through transfer function to produce a single output of the neuron. Transfer function introduces non-linearity to the network. During training, the inter-unit connections are optimized until the error in predictions is minimized and the network reaches the specified level of accuracy. Once the network is trained and tested it can be given new input information to predict the output. Many types of neural networks have been designed already and new ones are invented every week but all can be described by the transfer functions of their neurons, by the learning rule, and by the connection formula. ANN represents a promising modeling technique, especially for data sets having non-linear relationships which are frequently encountered in pharmaceutical processes. In terms of model specification, artificial neural networks require no knowledge of the data source but, since they often contain many weights that must be estimated, they require large training sets. In addition, ANNs can combine and incorporate both literature-based and experimental data to solve problems. The various applications of ANNs can be summarised into classification or pattern recognition, prediction and modeling. Supervised 'associating networks can be applied in pharmaceutical fields as an alternative to conventional response surface methodology. Unsupervised feature-extracting networks represent an alternative to principal component analysis. Non-adaptive unsupervised networks are able to reconstruct their patterns when presented with noisy samples and can be used for image recognition. The potential applications of ANN methodology in the pharmaceutical sciences range from interpretation of analytical data, drug and dosage form design through biopharmacy to clinical pharmacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
土豆不吐皮完成签到,获得积分10
刚刚
刚刚
1秒前
邓云飞完成签到 ,获得积分10
1秒前
aaaa发布了新的文献求助10
1秒前
1秒前
爆米花应助cijing采纳,获得10
2秒前
Owen应助小石头采纳,获得10
2秒前
DaisyRong完成签到,获得积分10
3秒前
芮rich完成签到,获得积分10
3秒前
3秒前
tang发布了新的文献求助10
4秒前
4秒前
nightmares发布了新的文献求助10
5秒前
NNi发布了新的文献求助10
5秒前
天天快乐应助dj666采纳,获得10
5秒前
小二郎应助wind采纳,获得10
6秒前
6秒前
淙淙柔水完成签到,获得积分0
6秒前
6秒前
dhdafwet完成签到,获得积分10
7秒前
胡夫欣发布了新的文献求助10
7秒前
wanci应助张益龙采纳,获得10
7秒前
快乐的访梦完成签到,获得积分10
7秒前
孙苡乔发布了新的文献求助10
7秒前
8秒前
所所应助超级王国采纳,获得10
8秒前
8秒前
zz完成签到,获得积分10
9秒前
9秒前
orixero应助nightmares采纳,获得10
9秒前
10秒前
嘻嘻完成签到,获得积分10
10秒前
10秒前
10秒前
杨杨爱科研完成签到,获得积分20
10秒前
10秒前
Gj969689发布了新的文献求助10
10秒前
Devin Irving发布了新的文献求助10
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Vertebrate Palaeontology, 5th Edition 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5154942
求助须知:如何正确求助?哪些是违规求助? 4350694
关于积分的说明 13546246
捐赠科研通 4193517
什么是DOI,文献DOI怎么找? 2299960
邀请新用户注册赠送积分活动 1299897
关于科研通互助平台的介绍 1244949