Hyperspectral Classification of Hazardous Materials Based on Deep Learning

危险废物 计算机科学 偏移量(计算机科学) 人工智能 高光谱成像 卷积神经网络 背景(考古学) 深度学习 数据挖掘 卷积(计算机科学) 模式识别(心理学) 人工神经网络 工程类 地质学 古生物学 程序设计语言 废物管理
作者
Yanlong Sun,Jinxing Hu,Yuan Diping,Yaowen Chen,Yangyang Liu,Qi Zhang,Wenjiang Chen
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (9): 7653-7653 被引量:2
标识
DOI:10.3390/su15097653
摘要

The identification of hazardous materials is a key measure in the prevention and control of fire and explosion disasters. Conventional techniques used to identify hazardous materials include contact detection and post-sampling laboratory testing, which cannot meet the needs of extreme environments, where personnel and equipment are not accessible for on-site detection. To address this problem, this paper proposes a method for the classification and identification of hazardous materials based on convolutional neural networks, which can achieve non-contact remote detection of hazardous materials. Firstly, a dataset containing 1800 hyperspectral images of hazardous materials, which can be used for deep learning, is constructed based on the hazardous materials hyperspectral data cube. Secondly, based on this, an improved ResNet50-based classification method for hazardous materials is proposed, which innovatively utilizes a classification network based on offset sampling convolution and split context-gated convolution. The results show that the method can achieve 93.9% classification accuracy for hazardous materials, which is 1% better than the classification accuracy of the original ResNet50 network. The network also has high performance under small data volume conditions, effectively solving the problem of low classification accuracy due to small data volume and blurred image data features of labelled hazardous material images. In addition, it was found that offset sampling convolution and split context-gated convolution showed synergistic effects in improving the performance of the network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
红泥小火炉完成签到,获得积分10
1秒前
yanxueyi完成签到 ,获得积分10
3秒前
4秒前
4秒前
欣忆完成签到 ,获得积分10
5秒前
LIGHT发布了新的文献求助10
5秒前
zho发布了新的文献求助10
9秒前
科研通AI2S应助科研通管家采纳,获得30
9秒前
orixero应助123采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
小北应助科研通管家采纳,获得10
9秒前
9秒前
爆米花应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得30
10秒前
10秒前
无花果应助科研通管家采纳,获得10
10秒前
哟梦完成签到,获得积分10
10秒前
MchemG应助做个大侠采纳,获得10
12秒前
科研通AI5应助婷婷采纳,获得10
13秒前
13秒前
Hello应助Evaporate采纳,获得10
14秒前
Jason举报大意的白易求助涉嫌违规
15秒前
16秒前
桐桐应助昏睡的羊青采纳,获得10
17秒前
来日可追应助LTHRTZ采纳,获得20
18秒前
青檬完成签到 ,获得积分10
20秒前
22秒前
22秒前
24秒前
cyh发布了新的文献求助10
26秒前
26秒前
26秒前
勤劳羊完成签到,获得积分10
26秒前
亚麻籽奶昔完成签到,获得积分10
26秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Plant–Pollinator Interactions: From Specialization to Generalization 400
Cai Yuanpei y la educación en la República de China (1912-1949) 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589309
求助须知:如何正确求助?哪些是违规求助? 3157588
关于积分的说明 9516135
捐赠科研通 2860478
什么是DOI,文献DOI怎么找? 1571847
邀请新用户注册赠送积分活动 737517
科研通“疑难数据库(出版商)”最低求助积分说明 722342