Early identification of autism spectrum disorder based on machine learning with eye-tracking data

自闭症谱系障碍 眼动 自闭症 心理学 随机森林 机器学习 认知 人工智能 支持向量机 逻辑回归 计算机科学 发展心理学 精神科
作者
Qiuhong Wei,Wenxin Dong,Dongchuan Yu,Ke Wang,Ting Yang,Yuanjie Xiao,Dan Long,Haiyi Xiong,Jie Chen,Ximing Xu,Tingyu Li
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:358: 326-334 被引量:25
标识
DOI:10.1016/j.jad.2024.04.049
摘要

Early identification of autism spectrum disorder (ASD) improves long-term outcomes, yet significant diagnostic delays persist. A retrospective cohort of 449 children (ASD: 246, typically developing [TD]: 203) was used for model development. Eye-movement data were collected from the participants watching videos that featured eye-tracking paradigms for assessing social and non-social cognition. Five machine learning algorithms, namely random forest, support vector machine, logistic regression, artificial neural network, and extreme gradient boosting, were trained to classify children with ASD and TD. The best-performing algorithm was selected to build the final model which was further evaluated in a prospective cohort of 80 children. The Shapley values interpreted important eye-tracking features. Random forest outperformed other algorithms during model development and achieved an area under the curve of 0.849 (< 3 years: 0.832, ≥ 3 years: 0.868) on the external validation set. Of the ten most important eye-tracking features, three measured social cognition, and the rest were related to non-social cognition. A deterioration in model performance was observed using only the social or non-social cognition-related eye-tracking features. The sample size of this study, although larger than that of existing studies of ASD based on eye-tracking data, was still relatively small compared to the number of features. Machine learning models based on eye-tracking data have the potential to be cost- and time-efficient digital tools for the early identification of ASD. Eye-tracking phenotypes related to social and non-social cognition play an important role in distinguishing children with ASD from TD children.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观的穆发布了新的文献求助10
1秒前
Pavel完成签到,获得积分10
2秒前
3秒前
领导范儿应助徐徐采纳,获得10
4秒前
外向的凝阳完成签到 ,获得积分10
4秒前
无极微光应助丶Dawn采纳,获得20
4秒前
122发布了新的文献求助10
5秒前
wait完成签到,获得积分10
11秒前
栋栋完成签到 ,获得积分10
12秒前
新晋老板完成签到,获得积分10
13秒前
加菲丰丰给chenxi的求助进行了留言
13秒前
隐形曼青应助博博采纳,获得10
14秒前
16秒前
122完成签到,获得积分20
16秒前
Lxx完成签到,获得积分10
17秒前
17秒前
CipherSage应助逝水无痕采纳,获得10
17秒前
YifanWang应助Ttimer采纳,获得10
18秒前
FashionBoy应助fedehe采纳,获得10
19秒前
guo发布了新的文献求助10
20秒前
Zyc发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
小二郎应助依紫采纳,获得10
23秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
newnew发布了新的文献求助10
26秒前
27秒前
27秒前
27秒前
29秒前
ming发布了新的文献求助10
30秒前
冰与火发布了新的文献求助10
30秒前
30秒前
SUNINE完成签到,获得积分10
31秒前
ljw199606完成签到,获得积分10
31秒前
xzy998应助加菲丰丰采纳,获得30
33秒前
尊敬的发布了新的文献求助10
33秒前
H_HP发布了新的文献求助30
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742261
求助须知:如何正确求助?哪些是违规求助? 5407364
关于积分的说明 15344547
捐赠科研通 4883713
什么是DOI,文献DOI怎么找? 2625203
邀请新用户注册赠送积分活动 1574062
关于科研通互助平台的介绍 1531044