Early identification of autism spectrum disorder based on machine learning with eye-tracking data

自闭症谱系障碍 眼动 自闭症 心理学 随机森林 机器学习 认知 人工智能 支持向量机 逻辑回归 计算机科学 发展心理学 精神科
作者
Qiuhong Wei,Wenxin Dong,Dongchuan Yu,Ke Wang,Ting Yang,Yuanjie Xiao,Dan Long,Haiyi Xiong,Jie Chen,Ximing Xu,Tingyu Li
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:358: 326-334 被引量:5
标识
DOI:10.1016/j.jad.2024.04.049
摘要

Early identification of autism spectrum disorder (ASD) improves long-term outcomes, yet significant diagnostic delays persist. A retrospective cohort of 449 children (ASD: 246, typically developing [TD]: 203) was used for model development. Eye-movement data were collected from the participants watching videos that featured eye-tracking paradigms for assessing social and non-social cognition. Five machine learning algorithms, namely random forest, support vector machine, logistic regression, artificial neural network, and extreme gradient boosting, were trained to classify children with ASD and TD. The best-performing algorithm was selected to build the final model which was further evaluated in a prospective cohort of 80 children. The Shapley values interpreted important eye-tracking features. Random forest outperformed other algorithms during model development and achieved an area under the curve of 0.849 (< 3 years: 0.832, ≥ 3 years: 0.868) on the external validation set. Of the ten most important eye-tracking features, three measured social cognition, and the rest were related to non-social cognition. A deterioration in model performance was observed using only the social or non-social cognition-related eye-tracking features. The sample size of this study, although larger than that of existing studies of ASD based on eye-tracking data, was still relatively small compared to the number of features. Machine learning models based on eye-tracking data have the potential to be cost- and time-efficient digital tools for the early identification of ASD. Eye-tracking phenotypes related to social and non-social cognition play an important role in distinguishing children with ASD from TD children.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有只小狗完成签到,获得积分10
1秒前
飞飞完成签到,获得积分10
2秒前
豆dou发布了新的文献求助10
2秒前
Mannone完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
13679165979完成签到,获得积分10
3秒前
Jocelyn7关注了科研通微信公众号
4秒前
Jzhang应助赵小可可可可采纳,获得10
4秒前
wls完成签到 ,获得积分10
5秒前
CC完成签到,获得积分10
5秒前
6秒前
鬼才之眼完成签到 ,获得积分10
6秒前
xfxx发布了新的文献求助10
7秒前
章家炜完成签到,获得积分20
7秒前
7秒前
茶博士发布了新的文献求助10
7秒前
专通下水道完成签到 ,获得积分10
12秒前
12秒前
12秒前
nenoaowu发布了新的文献求助30
12秒前
小马甲应助章家炜采纳,获得10
14秒前
赵李艺完成签到 ,获得积分10
14秒前
完美世界应助高大黄蜂采纳,获得10
15秒前
16秒前
16秒前
16秒前
zhangzhen发布了新的文献求助10
17秒前
马桶盖盖子完成签到 ,获得积分10
17秒前
18秒前
学术小白完成签到,获得积分10
18秒前
18秒前
郭豪琪发布了新的文献求助10
19秒前
认真丹亦完成签到 ,获得积分10
20秒前
周冬华完成签到,获得积分10
20秒前
烟花应助阔达的平卉采纳,获得10
20秒前
敦敦完成签到,获得积分20
20秒前
nenoaowu完成签到,获得积分10
20秒前
迟大猫应助Hangerli采纳,获得20
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824