Early identification of autism spectrum disorder based on machine learning with eye-tracking data

自闭症谱系障碍 眼动 自闭症 心理学 随机森林 机器学习 认知 人工智能 支持向量机 逻辑回归 计算机科学 发展心理学 精神科
作者
Qiuhong Wei,Wenxin Dong,Dongchuan Yu,Ke Wang,Ting Yang,Yuanjie Xiao,Dan Long,Haiyi Xiong,Jie Chen,Ximing Xu,Tingyu Li
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:358: 326-334 被引量:5
标识
DOI:10.1016/j.jad.2024.04.049
摘要

Early identification of autism spectrum disorder (ASD) improves long-term outcomes, yet significant diagnostic delays persist. A retrospective cohort of 449 children (ASD: 246, typically developing [TD]: 203) was used for model development. Eye-movement data were collected from the participants watching videos that featured eye-tracking paradigms for assessing social and non-social cognition. Five machine learning algorithms, namely random forest, support vector machine, logistic regression, artificial neural network, and extreme gradient boosting, were trained to classify children with ASD and TD. The best-performing algorithm was selected to build the final model which was further evaluated in a prospective cohort of 80 children. The Shapley values interpreted important eye-tracking features. Random forest outperformed other algorithms during model development and achieved an area under the curve of 0.849 (< 3 years: 0.832, ≥ 3 years: 0.868) on the external validation set. Of the ten most important eye-tracking features, three measured social cognition, and the rest were related to non-social cognition. A deterioration in model performance was observed using only the social or non-social cognition-related eye-tracking features. The sample size of this study, although larger than that of existing studies of ASD based on eye-tracking data, was still relatively small compared to the number of features. Machine learning models based on eye-tracking data have the potential to be cost- and time-efficient digital tools for the early identification of ASD. Eye-tracking phenotypes related to social and non-social cognition play an important role in distinguishing children with ASD from TD children.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助结实的栾采纳,获得10
1秒前
科研通AI5应助小樱采纳,获得10
2秒前
姚夏完成签到 ,获得积分10
2秒前
大鲟发布了新的文献求助10
3秒前
争当科研巨匠完成签到,获得积分10
5秒前
JamesPei应助羽言采纳,获得10
5秒前
6秒前
支鸿发布了新的文献求助10
6秒前
Ava应助小乙大夫采纳,获得10
7秒前
自由的香菇完成签到 ,获得积分10
7秒前
Akim应助羊小旸采纳,获得10
7秒前
舒适香露完成签到,获得积分10
7秒前
8秒前
。。完成签到,获得积分10
8秒前
小白完成签到,获得积分10
8秒前
pluto应助一一采纳,获得10
9秒前
9秒前
jinxing完成签到,获得积分10
10秒前
科研通AI5应助reap采纳,获得10
10秒前
JunJun完成签到 ,获得积分10
11秒前
1+1应助达不溜采纳,获得10
11秒前
。。发布了新的文献求助10
11秒前
菲菲公主完成签到,获得积分10
12秒前
大鲟完成签到,获得积分10
12秒前
敏静发布了新的文献求助10
13秒前
13秒前
bkagyin应助jinxing采纳,获得10
14秒前
深情安青应助tg2024采纳,获得10
15秒前
16秒前
suqiongwu完成签到,获得积分10
16秒前
16秒前
毛毛完成签到 ,获得积分10
16秒前
16秒前
17秒前
17秒前
小白发布了新的文献求助10
17秒前
Sky完成签到,获得积分10
18秒前
慕青应助二东采纳,获得10
19秒前
迅速海云完成签到,获得积分10
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Gay and Lesbian Asia 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3759125
求助须知:如何正确求助?哪些是违规求助? 3302180
关于积分的说明 10121269
捐赠科研通 3016580
什么是DOI,文献DOI怎么找? 1656512
邀请新用户注册赠送积分活动 790521
科研通“疑难数据库(出版商)”最低求助积分说明 753886