亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BERT4ST:: Fine-tuning pre-trained large language model for wind power forecasting

风力发电 风电预测 功率(物理) 环境科学 计算机科学 气象学 工程类 电气工程 电力系统 地理 物理 量子力学
作者
Zefeng Lai,Tangjie Wu,Xihong Fei,Qiang Ling
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:307: 118331-118331 被引量:18
标识
DOI:10.1016/j.enconman.2024.118331
摘要

Accurate forecasting of wind power generation is essential for ensuring power safety, scheduling various energy sources, and improving energy utilization. However, the elusive nature of wind, influenced by various meteorological and geographical factors, greatly complicates the wind power forecasting task. To improve the forecasting accuracy of wind power (WP), we propose a BERT-based model for spatio-temporal forecasting (BERT4ST), which is the first approach to fine-tune a large language model for the spatio-temporal modeling of WP. To deal with the inherent characteristics of WP, BERT4ST exploits the individual spatial and temporal dependency of patches and redesigns a set of spatial and temporal encodings. By well analyzing the connection between bidirectional attention networks and WP spatio-temporal data, BERT4ST employs a pre-trained BERT encoder as the backbone network to learn the individual spatial and temporal dependency of patches of WP data. Additionally, BERT4ST fine-tunes the pre-trained backbone in a multi-stage manner, i.e., first aligning the language model with the spatio-temporal data and then fine-tuning the downstream tasks while maintaining the stability of the backbone network. Experimental results demonstrate that our BERT4ST achieves desirable performance compared to some state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KINGAZX完成签到 ,获得积分10
22秒前
诸葛平卉完成签到 ,获得积分10
30秒前
蓝朱发布了新的文献求助10
42秒前
48秒前
yf完成签到,获得积分10
49秒前
54秒前
1分钟前
蓝朱完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Able完成签到,获得积分10
1分钟前
传奇3应助噢斯帕斯基采纳,获得10
1分钟前
zbr完成签到 ,获得积分10
1分钟前
pia叽完成签到 ,获得积分10
2分钟前
balko完成签到,获得积分10
2分钟前
2分钟前
ersheng发布了新的文献求助10
2分钟前
Criminology34应助坦率广山采纳,获得10
2分钟前
所所应助啦啦啦采纳,获得10
2分钟前
万能图书馆应助啦啦啦采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
ling发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
iNk应助mlx采纳,获得30
3分钟前
噢斯帕斯基关注了科研通微信公众号
3分钟前
3分钟前
充电宝应助ling采纳,获得10
4分钟前
啦啦啦发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
NattyPoe发布了新的文献求助10
4分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639713
求助须知:如何正确求助?哪些是违规求助? 4749883
关于积分的说明 15007176
捐赠科研通 4797859
什么是DOI,文献DOI怎么找? 2563980
邀请新用户注册赠送积分活动 1522864
关于科研通互助平台的介绍 1482529