BERT4ST:: Fine-tuning pre-trained large language model for wind power forecasting

风力发电 风电预测 功率(物理) 环境科学 计算机科学 气象学 工程类 电气工程 电力系统 地理 物理 量子力学
作者
Zefeng Lai,Tangjie Wu,Xihong Fei,Qiang Ling
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:307: 118331-118331 被引量:4
标识
DOI:10.1016/j.enconman.2024.118331
摘要

Accurate forecasting of wind power generation is essential for ensuring power safety, scheduling various energy sources, and improving energy utilization. However, the elusive nature of wind, influenced by various meteorological and geographical factors, greatly complicates the wind power forecasting task. To improve the forecasting accuracy of wind power (WP), we propose a BERT-based model for spatio-temporal forecasting (BERT4ST), which is the first approach to fine-tune a large language model for the spatio-temporal modeling of WP. To deal with the inherent characteristics of WP, BERT4ST exploits the individual spatial and temporal dependency of patches and redesigns a set of spatial and temporal encodings. By well analyzing the connection between bidirectional attention networks and WP spatio-temporal data, BERT4ST employs a pre-trained BERT encoder as the backbone network to learn the individual spatial and temporal dependency of patches of WP data. Additionally, BERT4ST fine-tunes the pre-trained backbone in a multi-stage manner, i.e., first aligning the language model with the spatio-temporal data and then fine-tuning the downstream tasks while maintaining the stability of the backbone network. Experimental results demonstrate that our BERT4ST achieves desirable performance compared to some state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助suman采纳,获得30
刚刚
1秒前
科研通AI2S应助难过的一寡采纳,获得10
3秒前
科研通AI2S应助难过的一寡采纳,获得10
3秒前
3秒前
4秒前
4秒前
Lucky完成签到,获得积分10
5秒前
6秒前
yyy发布了新的文献求助30
6秒前
小屋完成签到 ,获得积分10
7秒前
星辰大海应助长欢采纳,获得30
8秒前
思源应助jhsh采纳,获得10
9秒前
今后应助苏有朋采纳,获得10
9秒前
最爱吃火锅完成签到,获得积分10
9秒前
在水一方应助高挑的天寿采纳,获得10
10秒前
11秒前
11秒前
可爱的函函应助一心难求采纳,获得10
11秒前
12秒前
13秒前
赘婿应助木杉采纳,获得30
16秒前
hyperjoke发布了新的文献求助10
17秒前
17秒前
lalala发布了新的文献求助10
18秒前
18秒前
galichangfen发布了新的文献求助10
18秒前
123456完成签到,获得积分10
19秒前
小屋关注了科研通微信公众号
19秒前
orixero应助岳饼采纳,获得10
21秒前
23秒前
23秒前
23秒前
23秒前
科研通AI2S应助susu采纳,获得10
24秒前
25秒前
25秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
双黄应助科研通管家采纳,获得10
25秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265086
求助须知:如何正确求助?哪些是违规求助? 2905061
关于积分的说明 8332367
捐赠科研通 2575426
什么是DOI,文献DOI怎么找? 1399788
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633376