阴极
材料科学
光电子学
锌
纳米技术
工程物理
离子
电气工程
冶金
工程类
化学
有机化学
作者
Zhen Zeng,Jianyu Shen,Yiliang Lai,Guoxin Hua,Yuxiao Wang,Junyang Liu,Weihua Tang
标识
DOI:10.1002/adfm.202401059
摘要
Abstract Flexible electronics are among the highest‐profile devices in today's world. The development of high‐capacity power supply with both flexibility and rate stability is in great demand yet remains highly challenging. Herein, for the first time the construction of freestanding films is reported by integrating α‐MnO 2 nanofibers in MXene (Ti 3 C 2 T x ) bonded single‐walled carbon nanotubes (SWCNTs) networks (named MXSC) through covalent bonding as binder‐free cathodes for high capacity and rate stability aqueous zinc‐ion battery. The film electrodes boast high electrical conductivity and decent flexibility for rolling and folding. The optimal MnO 2 @MXSC (α‐MnO 2 /SWCNTs/MXene = 10:40:60 by weight ratio) cathode contributes a steady specific capacity of 368 mAh g −1 at 1 A g −1 over 1000 cycles charge and discharge process, delivering a high energy density of 354 Wh kg −1 at a power density of 963 W kg −1 . More importantly, the MnO 2 @MXSC cathode demonstrates exceptional cyclic performance after being bent 1000 times. The flexible Zn‐MnO 2 @MXSC thin film battery maintains its energy storage capability when subject to folding and cutting. Such outstanding abilities of this highly flexible rechargeable MnO 2 @MXSC cathode offer a unique perspective on powering wearable electronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI