Explore the value of carotid ultrasound radiomics nomogram in predicting ischemic stroke risk in patients with type 2 diabetes mellitus

医学 列线图 糖尿病 冲程(发动机) 心脏病学 内科学 2型糖尿病 无线电技术 缺血性中风 超声波 放射科 缺血 内分泌学 机械工程 工程类
作者
Yusen Liu,Ying Kong,Yanhong Yan,Pinjing Hui
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:15 被引量:1
标识
DOI:10.3389/fendo.2024.1357580
摘要

Background and objective Type 2 Diabetes Mellitus (T2DM) with insulin resistance (IR) is prone to damage the vascular endothelial, leading to the formation of vulnerable carotid plaques and increasing ischemic stroke (IS) risk. The purpose of this study is to develop a nomogram model based on carotid ultrasound radiomics for predicting IS risk in T2DM patients. Methods 198 T2DM patients were enrolled and separated into study and control groups based on IS history. After manually delineating carotid plaque region of interest (ROI) from images, radiomics features were identified and selected using the least absolute shrinkage and selection operator (LASSO) regression to calculate the radiomics score (RS). A combinatorial logistic machine learning model and nomograms were created using RS and clinical features like the triglyceride-glucose index. The three models were assessed using area under curve (AUC) and decision curve analysis (DCA). Results Patients were divided into the training set and the testing set by the ratio of 0.7. 4 radiomics features were selected. RS and clinical variables were all statically significant in the training set and were used to create a combination model and a prediction nomogram. The combination model (radiomics + clinical nomogram) had the largest AUC in both the training set and the testing set (0.898 and 0.857), and DCA analysis showed that it had a higher overall net benefit compared to the other models. Conclusions This study created a carotid ultrasound radiomics machine-learning-based IS risk nomogram for T2DM patients with carotid plaques. Its diagnostic performance and clinical prediction capabilities enable accurate, convenient, and customized medical care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遇见渔火发布了新的文献求助10
刚刚
1秒前
chichenglin发布了新的文献求助10
7秒前
InfoNinja应助科研通管家采纳,获得30
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
xxww发布了新的文献求助200
8秒前
大鹏完成签到,获得积分10
10秒前
bkagyin应助bvuiragybv采纳,获得10
30秒前
blueblue完成签到,获得积分10
36秒前
39秒前
奶糖喵完成签到 ,获得积分10
40秒前
bvuiragybv发布了新的文献求助10
42秒前
纯真的梦竹完成签到,获得积分10
43秒前
terryok完成签到,获得积分10
45秒前
害羞便当完成签到 ,获得积分10
47秒前
小趴菜完成签到 ,获得积分10
59秒前
sophia完成签到 ,获得积分10
1分钟前
甜乎贝贝完成签到 ,获得积分10
1分钟前
烫嘴普通话完成签到,获得积分10
1分钟前
lkk183完成签到 ,获得积分10
1分钟前
Snow完成签到 ,获得积分10
1分钟前
HTY完成签到 ,获得积分10
1分钟前
负责的寒梅完成签到 ,获得积分10
1分钟前
是我呀小夏完成签到 ,获得积分10
1分钟前
坦率的跳跳糖完成签到 ,获得积分10
1分钟前
Binbin完成签到 ,获得积分10
1分钟前
雷小牛完成签到 ,获得积分10
1分钟前
1分钟前
spume完成签到 ,获得积分10
1分钟前
shaojie完成签到 ,获得积分10
2分钟前
童童完成签到,获得积分10
2分钟前
2分钟前
zgsn应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
InfoNinja应助科研通管家采纳,获得20
2分钟前
萧水白应助科研通管家采纳,获得10
2分钟前
完美世界应助李慢慢采纳,获得10
2分钟前
从容松弛完成签到 ,获得积分10
2分钟前
仿真小学生完成签到 ,获得积分10
2分钟前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164826
求助须知:如何正确求助?哪些是违规求助? 2815925
关于积分的说明 7910592
捐赠科研通 2475504
什么是DOI,文献DOI怎么找? 1318250
科研通“疑难数据库(出版商)”最低求助积分说明 632035
版权声明 602296